Quasi-Robust Blind Deblurring with Multiple Color Images

Article Preview

Abstract:

In this paper, we firstly introduce the limitation and deficiency of L1-norm and L2-norm in deblurring and denoising and the merit of quasi-robust function. Then, we propose a new blind deblurring model using multiple color images. Finally, we give some simulations and the results show the effect of our new model for color degraded images. To see how well our algorithm compared against the non-blind deblurring model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1605-1609

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Bar, A. Brook, N. Sochen and N. Kiryati, Color Image Deblurring with Impulsive Noise, Proc. VLSM 2005, Beijing, China, LNCS 3752, pp.49-60.

DOI: 10.1007/11567646_5

Google Scholar

[2] L. Bar, N. Sochen and N. Kiryati, Image Deblurring in the Presence of Impulsive Noise, International Journal of Computer Vision, 2006, 70(3), pp.279-298.

DOI: 10.1007/s11263-006-6468-1

Google Scholar

[3] D. Barash, One-step deblurring and denoising color images using partial differential equations, in First SIAM Conference on Imaging. Science, Boston, MA, (2002).

Google Scholar

[4] P. Blomgren, T. Chan, Color TV: total variation methods for restoration of vector-valued images. IEEE Trans. Image Processing, 1998, 7 , pp.304-330.

DOI: 10.1109/83.661180

Google Scholar

[5] T. Chan, C. wong, Total variation blind deconvolution, IEEE Trans. on Image Processing, 1998, 17(3), pp.370-375.

DOI: 10.1109/83.661187

Google Scholar

[6] M. Ezra and K. Shree, Motion Based Motion Deblurring, IEEE Transactions on Pattern Analysis. and Machine Intelligence (PAMI), 2004, 26(6), pp.689-698.

DOI: 10.1109/tpami.2004.1

Google Scholar

[7] S. Farsiu, M. Elad and P. Milanfar, Multi-Frame Demosaicing and Super-Resolution from Under-Sampled Color Images, IS&T/SPIE Symposium on Electronic Imaging, 2004, 5299, pp.222-233.

DOI: 10.1117/12.538372

Google Scholar

[8] S. Farsiu, M. Robinson, M. Elad and P. Milanfar, Fast and robust multiframe super resolution. IEEE Trans. on Image Processing, 2004, 13(10), pp.1327-1344.

DOI: 10.1109/tip.2004.834669

Google Scholar

[9] R. Liu, F. Li and L. Su, Bilateral filtering based image restoration for multiple grayscale images, J. Comp. Appl., 2010, 10(4), pp.902-904.

DOI: 10.3724/sp.j.1087.2010.00902

Google Scholar

[10] A. Rav and S. Peleg, Two motion-blurred images are better than one. Pattern. Recognition Letters, 2005, 26, pp.311-317.

DOI: 10.1016/j.patrec.2004.10.017

Google Scholar

[11] W. Rey, Introduction to Robust and Quasi-Robust Statistical Methods, Springer-Verlag, New York, 1983, pp.90-116.

Google Scholar

[12] C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images. In: Proc. of the 6th Int'l Conf. on Computer Vision. 1998, pp.839-846.

Google Scholar

[13] M. Trimeche, D. Paliy, M. Vehvilainen and V. Katkovnic, Multichannel image deblurring of raw color components, Proceeding-spie the international society for optical engineering, 2005, 5674, pp.169-178.

DOI: 10.1117/12.586598

Google Scholar