Automatic Red Blood Cell Classification for MICAD Based on PSO-CSVM

Abstract:

Article Preview

The automatic classification of erythrocyte is critical to clinic blood-related disease treatment in Medical Image Computer Aided Diagnosing(MICAD). After 3D height field recovered from the varied shading, the depth map of each point on the surfaces is applied to calculate Gaussian curvature and mean curvature, which are used to produce surface type label image. Accordingly the surface is segmented into different parts through multi-scale bivariate polynomials function fitting. The count of different surface types is used to design a classifier for training and classifing the red blood cell by means of support vector machine and particle swarm optimization. The experimental result shows that this approach is easily to implement and promising.

Info:

Periodical:

Edited by:

Dongye Sun, Wen-Pei Sung and Ran Chen

Pages:

1952-1956

DOI:

10.4028/www.scientific.net/AMM.121-126.1952

Citation:

R. H. Wang "Automatic Red Blood Cell Classification for MICAD Based on PSO-CSVM", Applied Mechanics and Materials, Vols. 121-126, pp. 1952-1956, 2012

Online since:

October 2011

Authors:

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.