[1]
K. -c. Kim, I. -h. Choi, C. -M. Kim. A Study on the Advanced Technology Analysis Process of Steering System for Idle Performance. SAE International Paper, 2007-01-339.
DOI: 10.4271/2007-01-2339
Google Scholar
[2]
I.J. Hwang, G.J. Park. Mode and design sensitivity analyses for brake judder reduction. P I Mech Eng D-J Aut. 222 (2008) 1259-72.
Google Scholar
[3]
H. Jacobsson. Disc brake judder considering instantaneous disc thickness and spatial friction variation. P I Mech Eng D-J Aut. 217 (2003) 325-42.
DOI: 10.1243/095440703321645043
Google Scholar
[4]
M. Ralf. Brake Judder~Analysis of the Excitation and Transmission Mechanism Within the Coupled System Brake, Chassis and Steering System. SAE International Paper, 2005-01-3916.
DOI: 10.4271/2005-01-3916
Google Scholar
[5]
M. Triches, J.A. Cordioli, S.N.Y. Gerges, A. Pulice. Analysis of moan and whine noise generated by hydraulic pumps of power steering systems. SAE International Paper, 2003-01-3581.
DOI: 10.4271/2003-01-3581
Google Scholar
[6]
K. Carbary, D. Ulep, R. Witczak, G. Grenier, J. Dong, B. Steed. Power steering pump sound quality and vibration~Test stand development. SAE International Paper, 2003-01-1662.
DOI: 10.4271/2003-01-1662
Google Scholar
[7]
A.P. Kovacs. Computational Vibration Analysis of Vehicle Shimmy by a Power-Work Method. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility. 29 (1998) 341 - 64.
DOI: 10.1080/00423119808969379
Google Scholar
[8]
J. Yu, B. Nutwell, B. Brickner. Analysis of Vehicle Chassis Transmissibility of Steering Shimmy and Brake Judder: System Modelling and Validation. SAE International Paper, 2007-01-341.
DOI: 10.4271/2007-01-2341
Google Scholar
[9]
K. -W. Kim, J. -B. Park, S. -J. Lee. Tire Mass Imbalance, Rolling Phase Difference, Non-Uniformity- Induced Force Difference, and Inflation Pressure Change Effects on Steering Wheel Vibration. SAE International Paper, 2005-01-317.
DOI: 10.4271/2005-01-2317
Google Scholar
[10]
F.M.Á. d. Silva, R.M. Valle, M.T.C. d. Faria, F.P. Duarte. Modal Analysis of a Tubular Structure Vehicle Chassis. SAE International Paper, 2004-01-3423.
DOI: 10.4271/2004-01-3423
Google Scholar
[11]
W. -k. Shi, Z. -y. Chen, F. -x. Guo, Z. -h. Shen. Finite element modal analysis for a light bus. Computational Intelligence and Industrial Applications, 2009 PACIIA 2009 Asia-Pacific Conference on, 2009. pp.500-3.
DOI: 10.1109/paciia.2009.5406378
Google Scholar
[12]
P. Dayu, L. Ridong, Z. Zhengxing, F. Huihua. Modal Analysis of an Internal Combustion Engine With Finite Element Method Based on Contact Calculation. SAE International Paper, 2008-01-1583.
DOI: 10.4271/2008-01-1583
Google Scholar
[13]
B. Zhang, G. Chen, Q. Guo. Finite element model updating based on complex modal analysis for unsymmetrical damping system. Computer Engineering and Technology (ICCET), 2010 2nd International Conference on, 2010. p. V5-56-V5-60.
DOI: 10.1109/iccet.2010.5485368
Google Scholar
[14]
Z. Bai, Y. Zhao, W. Ma, H. Tian. Modal analysis for small satellite system with finite element method. Systems and Control in Aerospace and Astronautics, 2008 ISSCAA 2008 2nd International Symposium on, 2008. pp.1-5.
DOI: 10.1109/isscaa.2008.4776403
Google Scholar
[15]
P. Kindt, F.D. Coninck, P. Sas, W. Desmet. Experimental Modal Analysis of Radial Tires and the Influence of Tire Modes on Vehicle Structure-Borne Noise. SAE International Paper, 2006-05-0087.
DOI: 10.4271/2007-01-2248
Google Scholar
[16]
S. Hong, S. -H. Yoon, J. -E. Song. Experimental Modal Analysis of Various Powertrain Submodels. SAE International Paper, 2005-03-0167.
Google Scholar