[1]
T. Shaw,M. Winston C.J. Ruup,I. Klapper,P. Stoodley, Commonality of elastic and relaxation times in biofilms, Phys. Rev. Lett., Vol. 93 (2004) 098102, pp.1-4.
DOI: 10.1103/physrevlett.93.098102
Google Scholar
[2]
D.W. Peaceman, Fundamentals of numerical reservoir simulation, Elsevier, New York, (1997).
Google Scholar
[3]
K.J. Binns P.J. Lawrenson C.W. Trowbridge, The analytical and numerical solution of electric and magnetic field, John Wiley and Sons, New York, (1992).
Google Scholar
[4]
S. Hou X.D. Liu, A numerical method for solving variable coefficient elliptic equation with interfaces, J. Comput. Phys., Vol. 202 (2005), pp.411-445.
DOI: 10.1016/j.jcp.2004.07.016
Google Scholar
[5]
D.Q. Yang, Finite elements for elliptic problems with wild coefficients, Math. Comput. Simulation, Vol. 54 (2000), pp.383-395.
DOI: 10.1016/s0378-4754(00)00177-4
Google Scholar
[6]
G. Tryggvason, B, Bunner, A. Esmaeeli, etc, A front-tracking method for the computations of multiphase flow, J. Comput. Phys., Vol. 169 (2001), pp.708-759.
DOI: 10.1006/jcph.2001.6726
Google Scholar
[7]
P.A. Berthelsen, A decomposed immersed interface method for variable coefficient elliptic equations with non-smooth and discontinuous solution, J. Comput. Phys., Vol. 197 (2004), pp.364-383.
DOI: 10.1016/j.jcp.2003.12.003
Google Scholar
[8]
R.J. LeVeque, Z, Li, The immersed interface method for elliptic equations with discontinuous coefficient and singular sources, SIAM J. Numer. Anal., Vol. 31 (1994), pp.1019-1044.
DOI: 10.1137/0731054
Google Scholar
[9]
Z, Li, A fast iterative algorithm for elliptic interface problems, SIAM J. Numer. Anal., Vol. 35 (1998), pp.230-254.
DOI: 10.1137/s0036142995291329
Google Scholar
[10]
Klapper,T. shaw, A large jump asymptotic framework for solving elliptic and parabolic equtions with interfaces and strong coefficient discontinuities, Applied Numerical Mathematics, Vol. 57 (2007), pp.657-671.
DOI: 10.1016/j.apnum.2006.07.028
Google Scholar
[11]
P.G. Ciarlet, The finite element method for elliptie problems, North-Holland, Amsterdam, New York, Oxford, (1978).
Google Scholar
[12]
V. Thomjaee, Galerkin Finite Element Methods for parabolic problems, Springer-Verlag, (2003).
Google Scholar