Some Error Estimates on the Large Jump Asymptotic Method for Parabolic Iterface Problems

Article Preview

Abstract:

To approximate some problems with strongly discontinuous coefficients, we present the large jump asymptotic method for parabolic interface problems, focus on the derivation and proof of the asymptotic error estimates for our approximation, and show it is of order two. Numerical experiments verify the theoretical results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4726-4731

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Shaw,M. Winston C.J. Ruup,I. Klapper,P. Stoodley, Commonality of elastic and relaxation times in biofilms, Phys. Rev. Lett., Vol. 93 (2004) 098102, pp.1-4.

DOI: 10.1103/physrevlett.93.098102

Google Scholar

[2] D.W. Peaceman, Fundamentals of numerical reservoir simulation, Elsevier, New York, (1997).

Google Scholar

[3] K.J. Binns P.J. Lawrenson C.W. Trowbridge, The analytical and numerical solution of electric and magnetic field, John Wiley and Sons, New York, (1992).

Google Scholar

[4] S. Hou X.D. Liu, A numerical method for solving variable coefficient elliptic equation with interfaces, J. Comput. Phys., Vol. 202 (2005), pp.411-445.

DOI: 10.1016/j.jcp.2004.07.016

Google Scholar

[5] D.Q. Yang, Finite elements for elliptic problems with wild coefficients, Math. Comput. Simulation, Vol. 54 (2000), pp.383-395.

DOI: 10.1016/s0378-4754(00)00177-4

Google Scholar

[6] G. Tryggvason, B, Bunner, A. Esmaeeli, etc, A front-tracking method for the computations of multiphase flow, J. Comput. Phys., Vol. 169 (2001), pp.708-759.

DOI: 10.1006/jcph.2001.6726

Google Scholar

[7] P.A. Berthelsen, A decomposed immersed interface method for variable coefficient elliptic equations with non-smooth and discontinuous solution, J. Comput. Phys., Vol. 197 (2004), pp.364-383.

DOI: 10.1016/j.jcp.2003.12.003

Google Scholar

[8] R.J. LeVeque, Z, Li, The immersed interface method for elliptic equations with discontinuous coefficient and singular sources, SIAM J. Numer. Anal., Vol. 31 (1994), pp.1019-1044.

DOI: 10.1137/0731054

Google Scholar

[9] Z, Li, A fast iterative algorithm for elliptic interface problems, SIAM J. Numer. Anal., Vol. 35 (1998), pp.230-254.

DOI: 10.1137/s0036142995291329

Google Scholar

[10] Klapper,T. shaw, A large jump asymptotic framework for solving elliptic and parabolic equtions with interfaces and strong coefficient discontinuities, Applied Numerical Mathematics, Vol. 57 (2007), pp.657-671.

DOI: 10.1016/j.apnum.2006.07.028

Google Scholar

[11] P.G. Ciarlet, The finite element method for elliptie problems, North-Holland, Amsterdam, New York, Oxford, (1978).

Google Scholar

[12] V. Thomjaee, Galerkin Finite Element Methods for parabolic problems, Springer-Verlag, (2003).

Google Scholar