A New Image Affine-Invariant Region Detector and Descriptor

Article Preview

Abstract:

To solve the problems that exist in present affine-invariant region detection and description methods, a new affine-invariant region detector and descriptor are proposed in this paper. First, affine-invariant regions in an image are detected using a connected-region based method. And then a vector composed of a group of affine invariant moments is adopted to descript the regions. Experiments show the effectiveness and robustness of the method. It is also very fast.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2911-2914

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Mikolajczyk. C. Schmid. An Affine Invariant Interest Point Detector[C]/In Proceedings of the 8th International Conference on Computer Vision, Vancouver, Canada. 2002: 128–142.

DOI: 10.1007/3-540-47969-4_9

Google Scholar

[2] K. Mikolajczyk, C. Schmid. Scale & Affine Invariant Interest Point Detectors[J]. International Journal of Computer Vision. 2004, 60(1): 63-86.

DOI: 10.1023/b:visi.0000027790.02288.f2

Google Scholar

[3] J. Matas, O. Chum, M. Urban et al. Robust Wide-baseline Stereo from Maximally Stable Extremal Regions[C]/Proceedings of the British Machine Vision Conference, Cardiff, UK, 2002: 384–393.

DOI: 10.5244/c.16.36

Google Scholar

[4] T. Tuylelaars, L. Van Gool. Matching Widely Separated View Based on Affine Invariant Regions[J]. International Journal of Computer Vision, 2004, 59(1): 61-85.

DOI: 10.1023/b:visi.0000020671.28016.e8

Google Scholar

[5] T. Tuylelaars, L. Van Gool, D. Haene et al. Matching of Affinely Invariant Regions for Visual Servoing[C]/ In proceedings of international Conference Robotics and Automation. 1999: 1601-1606.

DOI: 10.1109/robot.1999.772588

Google Scholar

[6] T. Kadir, M. Brady, A. Zisserman. An Affine Invariant Salient Region Detector[C]/Proceedings of Eighth European Conference on Computer Vision, 2004: 345-457.

DOI: 10.1007/978-3-540-24670-1_18

Google Scholar

[7] K. Mikolajczyk, T. Tuylelaars, C. Schmid et al. A Comparison of Affine Region Detectors[J]. International Journal of Computer Vision, 2005, 65(1/2): 43-72.

Google Scholar

[8] David G. Lowe. Object Recognition from Local Scale-invariant Features[C]/ Proceedings of the International Conference on Computer Vision, Corfu: Greece, 1999: 1150-1157.

DOI: 10.1109/iccv.1999.790410

Google Scholar

[9] David G. Lowe. Distinctive Image Features from Scale-invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.

DOI: 10.1023/b:visi.0000029664.99615.94

Google Scholar

[10] Hu M K. Visual Pattern Recognition by Moment Invariants[J]. IRE Transactions on Information Theory, 1962, IT-8: 179-187.

DOI: 10.1109/tit.1962.1057692

Google Scholar

[11] Jan Flusser, Tomáš Suk, Barbara Zitová. Moments and Moment Invariants in Pattern Recognition[M]. Chichester: Wiley & Sons Ltd., 2009: 60-63.

DOI: 10.1002/9780470684757

Google Scholar