[1]
Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, colume 828 of Lecture Nodes in Computer Science. Spring Verlag, (1994).
Google Scholar
[2]
Buchberger, B. The Theorema Project: A Progress Report. In Kerber,M. and Kohlhase, M. (eds. ), Symbolic Computation and Automated Reasoning, 2000, A.K. Peters, Natick, p.98–113.
Google Scholar
[3]
S. Buswell et al. The OpenMath Standard, version 2. 0, (2002).
Google Scholar
[4]
V. Sorge. Non-trivial symbolic computations in proof planning. In FroCoS '00: Proceedings of the Third International Workshop on Frontiers of Combining Systems, London, UK, 2000. Springer-Verlag, p.121–135.
DOI: 10.1007/10720084_9
Google Scholar
[5]
Kaliszyk, C. & Wiedijk, F. Certified computer algebra on top of an interactive theorem prover. In J.G. Carbonell & J. Siekmann (eds), Towards Mechanized Mathematical Assistants, Lecture Notes in Computer Science, Vol. 4573, Heidelberg: Springer-Verlag, 2007, pp.94-105.
DOI: 10.1007/978-3-540-73086-6_8
Google Scholar
[6]
Aracne. Tim Sheard. Putting Curry-Howard to work. In Proceedings of ACM Workshop on Haskell, Tallinn, Tallinn, Estonia, September 2005. ACM, p.74–85.
DOI: 10.1145/1088348.1088356
Google Scholar
[7]
P. Letouzey. Extraction in coq: An overview. In CiE'08, volume 5028 of LNCS. Springer, 2008, p.359–369.
Google Scholar
[8]
Davis, R. Sigal and EJ Weyuker, Computability, Complexity, and Languages: Fundamentals of Theoretical Computer Science (second ed. ), Academic Press, San Diego, CA, (1994).
DOI: 10.2307/2275691
Google Scholar