Quasi-Monte Carlo Gaussian Particle Filtering Acceleration Using CUDA

Article Preview

Abstract:

A CUDA accelerated Quasi-Monte Carlo Gaussian particle filter (QMC-GPF) is proposed to deal with real-time non-linear non-Gaussian problems. GPF is especially suitable for parallel implementation as a result of the elimination of resampling step. QMC-GPF is an efficient counterpart of GPF using QMC sampling method instead of MC. Since particles generated by QMC method provides the best-possible distribution in the sampling space, QMC-GPF can make more accurate estimation with the same number of particles compared with traditional particle filter. Experimental results show that our GPU implementation of QMC-GPF can achieve the maximum speedup ratio of 95 on NVIDIA GeForce GTX 460.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3311-3315

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Transactions on Signal Processing, vol. 50, no. 2, pp.174-188, (2002).

DOI: 10.1109/78.978374

Google Scholar

[2] N. Gordon, D. Salmond, and A. F. M. Smith, Novel approach to nonlinear and non-Gaussian Bayesian state estimation, Proceedings of Institute of Electrical and Electronics Engineers, vol. 140, pp.107-113, (1993).

DOI: 10.1049/ip-f-2.1993.0015

Google Scholar

[3] M. Pitt and N. Shephard. Filtering via simulation: Auxiliary particle filters, Journal of the American Statistical Association, vol. 94, no. 446, pp.590-599, (1999).

DOI: 10.1080/01621459.1999.10474153

Google Scholar

[4] C. Musso, N. Oudjane, and F. LeGland. Improving regularised particle filters, Sequential Monte Carlo Methods in Practice, A. Doucet, J. F. G. de Freitas, and N. J. Gordon, Eds. New York: Springer-Verlag, (2001).

DOI: 10.1007/978-1-4757-3437-9_12

Google Scholar

[5] M. Bolic. Architectures for efficient implementation of particle filters, Ph.D. dissertation, Stony Brook University, New York, (2004).

Google Scholar

[6] S. Hong, J. Lee, A. Athalye, P. M. Djuric, and W.D. Cho. Design methodology for domain specific parameterizable particle filter realizations, IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 9, pp.1987-2000, (2007).

DOI: 10.1109/tcsi.2007.904690

Google Scholar

[7] G. Hendeby, R. Karlsson and F. Gustafsson. Particle Filtering: The Need for Speed, EURASIP Journal on Advances in Signal Processing, vol. 2010, no. 181403, pp.1-9, (2010).

DOI: 10.1155/2010/181403

Google Scholar

[8] M. A. Chao, C. Y. Chu, C. H. Chao, A. Y. Wu. Efficient parallelized particle filter design on CUDA, IEEE Workshop on Signal Processing Systems (SIPS), pp.299-304, (2010).

DOI: 10.1109/sips.2010.5624805

Google Scholar

[9] J. H. Kotecha, P. M. Djuric. Gaussian particle filtering, IEEE Transactions on Signal Processing, vol. 51, no. 10, pp.2592-2601, (2003).

DOI: 10.1109/tsp.2003.816758

Google Scholar

[10] Michael, J. R., W. R. Schucany and R. W. Haas. Generating random variates using transformations with multiple roots, The American Statistician, vol. 30, no. 2, pp.88-90, (1976).

DOI: 10.1080/00031305.1976.10479147

Google Scholar