[1]
Ozgu, M.R. Continuous caster instrumentation: state-of-the-art review. Canadian Metallurgical Quarterly. 1996, 35(3): 199- 223.
DOI: 10.1179/cmq.1996.35.3.199
Google Scholar
[2]
Vainola R.V., Holappa, L.E.K. et al. Modern steelmaking technology for special steels. Journal of Materials Processing Technology. 1995, 53(1-2): 453- 465.
DOI: 10.1016/0924-0136(95)02002-4
Google Scholar
[3]
Peter Cowling. A flexible decision support system for steel hot rolling mill scheduling. Computers and Industrial Englneeirng. 2003, 45(2), 307-321.
DOI: 10.1016/s0360-8352(03)00038-x
Google Scholar
[4]
LixinTang, PeterLuh, Jiyin Liu. Steel-making process scheduling using lagrangian relaxation. International Journal of Production Research, 2002, 40(1), 5570.
Google Scholar
[5]
Djama Ouelhadj. A multi-agent system for the integrated dynamic schedu1ing of steel production: (Dissertation). Nottingham: the university of Nottingham, (2003).
Google Scholar
[6]
Wang, H. Flexible flow shops scheduling: Optimum, heuristics and artificial intelligence solutions. Expert Systems, 2005 , 22(2): 78~85.
DOI: 10.1111/j.1468-0394.2005.00297.x
Google Scholar
[7]
Framinan, JM, Leisten, R, Ruiz-Usano, R. Efficient heuristics for flowshop sequencing with the objectives of makespan and flowtime minimisation. European Journal of Operational Research, 2002, 141(3): 559~569.
DOI: 10.1016/s0377-2217(01)00278-8
Google Scholar
[8]
Grangeon, N, Tanguy, A, Tchernev, N. Generic simulation model for hybrid flow-shop. Computers and Industrial Engineering, 1999, 37(1-2): 207~210.
DOI: 10.1016/s0360-8352(99)00056-x
Google Scholar
[9]
Kusiak, A, Chen, M. Expert systems for planning and scheduling manufacturing systems. European Journal of Operational Research, 1988, 34(2): 113~130.
DOI: 10.1016/0377-2217(88)90346-3
Google Scholar