[1]
A.N. Gent, Elastic stability of rubber compression springs, J. Mech. Engrg. 1964, 6(4) 318-326.
Google Scholar
[2]
C. G. Koh, J. M. Kelly, A simple mechanical model for elastomeric isolation bearings. Int. J. Mech. Sci. 1988, 30(12) 933-943.
DOI: 10.1016/0020-7403(88)90075-6
Google Scholar
[3]
S. Nagarajaiah, K. Ferrell, Stability of elastomeric seismic isolation bearings, J. Struct. Engrg. 1999, 125(9) 946-954.
DOI: 10.1061/(asce)0733-9445(1999)125:9(946)
Google Scholar
[4]
I. G. Buckle, S. Nagarajaiah, and K. Ferrell, Stability of elastomeric seismic isolation bearings: experimental study, J. Struct. Engrg. 2002, 128(1) 3-11.
DOI: 10.1061/(asce)0733-9445(2002)128:1(3)
Google Scholar
[5]
M. Iizuka, A macroscopic model for prediction large-deformation behaviors of laminated rubber bearings, J. Engrg. Struct. 22(2002) 323-334.
DOI: 10.1016/s0141-0296(98)00118-7
Google Scholar
[6]
J. M. Kelly, Tension buckling in multilayer elastomeric bearings, J. Engrg. Mech. 2003, 129(12) 1363-1368.
DOI: 10.1061/(asce)0733-9399(2003)129:12(1363)
Google Scholar
[7]
W. G. Liu, W. F. He, D. M. Feng and Q. R. Yang, Vertical stiffness and deformation analysis models of rubber isolators in compression and compression-shear states, J. Engrg. Mech. 2009, 135(9) 945-952.
DOI: 10.1061/(asce)em.1943-7889.0000010
Google Scholar
[8]
F. L. Zhou, W. G. Liu et al. Mechanic characteristics of rubber bearings in column top isolation system, Proc. International workshop on seismic isolation, energy dissipation and control of structures. Guangzhou, Beijing: Seismological Press, 1999, 44-45.
Google Scholar
[9]
X. Y. Zhou, M. Han et al. Horizontal rigidity coefficient of the serial system of rubber bearing with column. J. Vibration Engineering. 1999, 12(2) 157-165.
Google Scholar
[10]
X. Y. Zhou, M. Han et al. Calculation method of lateral stiffness of combined rubber bearing and serial system of bearing with columns. J. Earthquake engineering and engineering vibration, 1999, 19(4) 67-75.
Google Scholar
[11]
X. Y. Zhou, D. H. Ma et al. A formula for horizontal stiffness of composited isolators, J. Civil engineering, 2000, 33(6) 38-44.
Google Scholar
[12]
R. E. Bellman, J. Casti, Differential quadrature and long-term integration, J. Math. Anal. Appl., 34,(1971) 235-238.
DOI: 10.1016/0022-247x(71)90110-7
Google Scholar
[13]
X. Wang and C. W. Bert, A New Approach in Applying Differential Quadrature to Static and Free Vibrational Analysis of Beams and Plates, J. Sound and Vibration, 162(1993)566-572.
DOI: 10.1006/jsvi.1993.1143
Google Scholar
[14]
S. R. Li and L. L. Fan, Transient Dynamic Response of Timoshenko Beams under Thermal Shock, J. Vibration and Shock, 2008, 27(7) 122-126
Google Scholar
[15]
O. Sepahi, M. R. Forouzan, P. Malekzadeh, Post-Buckling Analysis of Variable Cross-Section Cantilever Beams under Combined Load via Differential Quadrature Method, KSCE J. Civil Engrg., 2010, 14(2) 207- 214.
DOI: 10.1007/s12205-010-0207-4
Google Scholar