Effect of Etching Temperature on the Growth of Silicon Nanowires

Article Preview

Abstract:

The effects of different etching temperatures (near room temperature) on the length and surface morphology of SiNWs were reported in this paper. The studies on temperature dependence of SiNWs growth rate were carried out at 20 °C, 30 °C, 40 °C, 50 °C, 60 °C, and 70 °C for n-type and p-type substrates. The results suggested that the SiNWs length could be controlled easily by the change of the etching temperature. Superlong SiNWs were also fabricated by this technique. The superlong SiNWs had the length more than 400 μm and the aspect ratios were about 2000-20000, which could be applied in nanosensors and interconnection.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1082-1088

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Pavesi. The routes towards a silicon-based laser, Materials Today vol. 8, pp.18-25, (2005).

Google Scholar

[2] D. P. Yu, Z. G. Bai, J. J. Wang, et al. Direct evidence of quantum confinement from the size dependence of the photoluminescence of silicon quantum wires, Physical Review B vol. 59, pp. R2498-R2501, (1999).

DOI: 10.1103/physrevb.59.r2498

Google Scholar

[3] M. Becker, V. Sivakov, G. Andra, et al. The SERS and TERS effects obtained by gold droplets on top of Si nanowires, Nano Letters vol. 7, pp.75-80, (2007).

DOI: 10.1021/nl0621286

Google Scholar

[4] S. W. Chung, J. Y. Yu and J. R. Heath. Silicon nanowire devices, Applied Physics Letters vol. 76, pp.2068-2070, (2000).

DOI: 10.1063/1.126257

Google Scholar

[5] M. A. Green. Crystalline and thin-film silicon solar cells: state of the art and future potential, Solar Energy vol. 74, pp.181-192, (2003).

DOI: 10.1016/s0038-092x(03)00187-7

Google Scholar

[6] B. Z. Tian, X. L. Zheng, T. J. Kempa, et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources, Nature vol. 449, p.885-U888, (2007).

DOI: 10.1038/nature06181

Google Scholar

[7] Y. Cui, Q. Q. Wei, H. K. Park, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science vol. 293, pp.1289-1292, (2001).

DOI: 10.1126/science.1062711

Google Scholar

[8] O. Moutanabbir, S. Senz, Z. Zhang, et al. Synthesis of isotopically controlled metal-catalyzed silicon nanowires, Nano Today vol., pp.393-398, (2009).

DOI: 10.1016/j.nantod.2009.08.009

Google Scholar

[9] S. Hofmann, C. Ducati, R. J. Neill, et al. Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition, Journal of Applied Physics vol. 94, pp.6005-6012, (2003).

DOI: 10.1063/1.1614432

Google Scholar

[10] W. Yue, C. Yi, H. Lynn, et al. Controlled growth and structures of molecular-scale silicon nanowires, Nano Letters vol. 4, pp.433-436, (2004).

Google Scholar

[11] A. A. Yasseri, S. Sharma, T. I. Kamins, et al. Growth and use of metal nanocrystal assemblies on high-density silicon nanowires formed by chemical vapor deposition, Applied Physics a-Materials Science & Processing vol. 82, pp.659-664, (2006).

DOI: 10.1007/s00339-005-3446-3

Google Scholar

[12] H. Abed, A. Charrier, H. Dallaporta, et al. Directed growth of horizontal silicon nanowires by laser induced decomposition of silane, Journal of Vacuum Science & Technology B vol. 24, pp.1248-1253, (2006).

DOI: 10.1116/1.2194948

Google Scholar

[13] A. M. Morales and C. M. Lieber. A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science vol. 279, pp.208-211, (1998).

DOI: 10.1126/science.279.5348.208

Google Scholar

[14] D. P. Yu, Z. G. Bai, Y. Ding, et al. Nanoscale silicon wires synthesized using simple physical evaporation, Applied Physics Letters vol. 72, pp.3458-3460, (1998).

DOI: 10.1063/1.121665

Google Scholar

[15] Z. W. Pan, Z. R. Dai, L. Xu, et al. Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders, Journal of Physical Chemistry B vol. 105, pp.2507-2514, (2001).

DOI: 10.1021/jp004253q

Google Scholar

[16] C. M. Lieber and Z. L. Wang. Functional nanowires, Mrs Bulletin vol. 32, pp.99-108, (2007).

Google Scholar

[17] S. T. Lee, N. Wang, Y. F. Zhang, et al. Oxide-assisted semiconductor nanowire growth, Mrs Bulletin vol. 24, pp.36-42, (1999).

DOI: 10.1557/s088376940005288x

Google Scholar

[18] Y. F. Zhang, Y. H. Tang, N. Wang, et al. One-dimensional growth mechanism of crystalline silicon nanowires, Journal of Crystal Growth vol. 197, pp.136-140, (1999).

DOI: 10.1016/s0022-0248(98)00953-1

Google Scholar

[19] S. W. Cheng and H. F. Cheung. Role of electric field on formation of silicon nanowires, Journal of Applied Physics vol. 94, pp.1190-1194, (2003).

DOI: 10.1063/1.1583155

Google Scholar

[20] Y. F. Zhang, Y. H. Tang, C. S. Lee, et al. Laser ablation behavior of a granulated Si target, Journal of Materials Science Letters vol. 18, pp.123-125, (1999).

Google Scholar

[21] Y. H. Tang, Y. F. Zhang, N. Wang, et al. Si nanowires synthesized from silicon monoxide by laser ablation, Journal of Vacuum Science & Technology B vol. 19, pp.317-319, (2001).

Google Scholar

[22] Y. Cui, Z. H. Zhong, D. L. Wang, et al. High performance silicon nanowire field effect transistors, Nano Letters vol. 3, pp.149-152, (2003).

DOI: 10.1021/nl025875l

Google Scholar

[23] C. T. Black. Self-aligned self assembly of multi-nanowire silicon field effect transistors, Applied Physics Letters vol. 87, pp. (2005).

DOI: 10.1063/1.2112191

Google Scholar

[24] H. Bohr-Ran, H. Jung-Fu, H. Chien-Sheng, et al. Silicon nanowire networks for the application of field effect phototransistor, Materials Science & Engineering C vol., pp.1197-1200, (2007).

Google Scholar

[25] Y. H. Tang, Y. F. Zhang, H. Y. Peng, et al. Si nanowires synthesized by laser ablation of mixed SiC and SiO2 powders, Chemical Physics Letters vol. 314, pp.16-20, (1999).

DOI: 10.1016/s0009-2614(99)01119-7

Google Scholar

[26] L. Wan, W. Gong, K. Jiang, et al. Preparation and surface morphology of silicon nanowires under normal conditions, Applied Surface Science vol. 254, pp.4899-4907, (2008).

DOI: 10.1016/j.apsusc.2008.01.142

Google Scholar

[27] L. J. Wan, W. L. Gong, K. W. Jiang, et al. Selective formation of silicon nanowires on pre-patterned substrates, Applied Surface Science vol. 255, pp.3752-3758, (2009).

DOI: 10.1016/j.apsusc.2008.10.025

Google Scholar

[28] K. Q. Peng, Y. J. Yan, S. P. Gao, et al. Dendrite-assisted growth of silicon nanowires in electroless metal deposition, Advanced Functional Materials vol. 13, pp.127-132, (2003).

DOI: 10.1002/adfm.200390018

Google Scholar

[29] C. W. Nieh and L. J. Chen. Cross-sectional transmission electron-microscope study of solid-phase epitaxial-growth in BF2+-implanted (001)SI, Journal of Applied Physics vol. 60, pp.3546-3549, (1986).

DOI: 10.1063/1.337609

Google Scholar

[30] H. Habuka, T. Suzuki, S. Yamamoto, et al. Dominant rate process of silicon surface etching by hydrogen chloride gas, Thin Solid Films vol. 489, pp.104-110, (2005).

DOI: 10.1016/j.tsf.2005.04.121

Google Scholar