[1]
L. Pavesi. The routes towards a silicon-based laser, Materials Today vol. 8, pp.18-25, (2005).
Google Scholar
[2]
D. P. Yu, Z. G. Bai, J. J. Wang, et al. Direct evidence of quantum confinement from the size dependence of the photoluminescence of silicon quantum wires, Physical Review B vol. 59, pp. R2498-R2501, (1999).
DOI: 10.1103/physrevb.59.r2498
Google Scholar
[3]
M. Becker, V. Sivakov, G. Andra, et al. The SERS and TERS effects obtained by gold droplets on top of Si nanowires, Nano Letters vol. 7, pp.75-80, (2007).
DOI: 10.1021/nl0621286
Google Scholar
[4]
S. W. Chung, J. Y. Yu and J. R. Heath. Silicon nanowire devices, Applied Physics Letters vol. 76, pp.2068-2070, (2000).
DOI: 10.1063/1.126257
Google Scholar
[5]
M. A. Green. Crystalline and thin-film silicon solar cells: state of the art and future potential, Solar Energy vol. 74, pp.181-192, (2003).
DOI: 10.1016/s0038-092x(03)00187-7
Google Scholar
[6]
B. Z. Tian, X. L. Zheng, T. J. Kempa, et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources, Nature vol. 449, p.885-U888, (2007).
DOI: 10.1038/nature06181
Google Scholar
[7]
Y. Cui, Q. Q. Wei, H. K. Park, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science vol. 293, pp.1289-1292, (2001).
DOI: 10.1126/science.1062711
Google Scholar
[8]
O. Moutanabbir, S. Senz, Z. Zhang, et al. Synthesis of isotopically controlled metal-catalyzed silicon nanowires, Nano Today vol., pp.393-398, (2009).
DOI: 10.1016/j.nantod.2009.08.009
Google Scholar
[9]
S. Hofmann, C. Ducati, R. J. Neill, et al. Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition, Journal of Applied Physics vol. 94, pp.6005-6012, (2003).
DOI: 10.1063/1.1614432
Google Scholar
[10]
W. Yue, C. Yi, H. Lynn, et al. Controlled growth and structures of molecular-scale silicon nanowires, Nano Letters vol. 4, pp.433-436, (2004).
Google Scholar
[11]
A. A. Yasseri, S. Sharma, T. I. Kamins, et al. Growth and use of metal nanocrystal assemblies on high-density silicon nanowires formed by chemical vapor deposition, Applied Physics a-Materials Science & Processing vol. 82, pp.659-664, (2006).
DOI: 10.1007/s00339-005-3446-3
Google Scholar
[12]
H. Abed, A. Charrier, H. Dallaporta, et al. Directed growth of horizontal silicon nanowires by laser induced decomposition of silane, Journal of Vacuum Science & Technology B vol. 24, pp.1248-1253, (2006).
DOI: 10.1116/1.2194948
Google Scholar
[13]
A. M. Morales and C. M. Lieber. A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science vol. 279, pp.208-211, (1998).
DOI: 10.1126/science.279.5348.208
Google Scholar
[14]
D. P. Yu, Z. G. Bai, Y. Ding, et al. Nanoscale silicon wires synthesized using simple physical evaporation, Applied Physics Letters vol. 72, pp.3458-3460, (1998).
DOI: 10.1063/1.121665
Google Scholar
[15]
Z. W. Pan, Z. R. Dai, L. Xu, et al. Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders, Journal of Physical Chemistry B vol. 105, pp.2507-2514, (2001).
DOI: 10.1021/jp004253q
Google Scholar
[16]
C. M. Lieber and Z. L. Wang. Functional nanowires, Mrs Bulletin vol. 32, pp.99-108, (2007).
Google Scholar
[17]
S. T. Lee, N. Wang, Y. F. Zhang, et al. Oxide-assisted semiconductor nanowire growth, Mrs Bulletin vol. 24, pp.36-42, (1999).
DOI: 10.1557/s088376940005288x
Google Scholar
[18]
Y. F. Zhang, Y. H. Tang, N. Wang, et al. One-dimensional growth mechanism of crystalline silicon nanowires, Journal of Crystal Growth vol. 197, pp.136-140, (1999).
DOI: 10.1016/s0022-0248(98)00953-1
Google Scholar
[19]
S. W. Cheng and H. F. Cheung. Role of electric field on formation of silicon nanowires, Journal of Applied Physics vol. 94, pp.1190-1194, (2003).
DOI: 10.1063/1.1583155
Google Scholar
[20]
Y. F. Zhang, Y. H. Tang, C. S. Lee, et al. Laser ablation behavior of a granulated Si target, Journal of Materials Science Letters vol. 18, pp.123-125, (1999).
Google Scholar
[21]
Y. H. Tang, Y. F. Zhang, N. Wang, et al. Si nanowires synthesized from silicon monoxide by laser ablation, Journal of Vacuum Science & Technology B vol. 19, pp.317-319, (2001).
Google Scholar
[22]
Y. Cui, Z. H. Zhong, D. L. Wang, et al. High performance silicon nanowire field effect transistors, Nano Letters vol. 3, pp.149-152, (2003).
DOI: 10.1021/nl025875l
Google Scholar
[23]
C. T. Black. Self-aligned self assembly of multi-nanowire silicon field effect transistors, Applied Physics Letters vol. 87, pp. (2005).
DOI: 10.1063/1.2112191
Google Scholar
[24]
H. Bohr-Ran, H. Jung-Fu, H. Chien-Sheng, et al. Silicon nanowire networks for the application of field effect phototransistor, Materials Science & Engineering C vol., pp.1197-1200, (2007).
Google Scholar
[25]
Y. H. Tang, Y. F. Zhang, H. Y. Peng, et al. Si nanowires synthesized by laser ablation of mixed SiC and SiO2 powders, Chemical Physics Letters vol. 314, pp.16-20, (1999).
DOI: 10.1016/s0009-2614(99)01119-7
Google Scholar
[26]
L. Wan, W. Gong, K. Jiang, et al. Preparation and surface morphology of silicon nanowires under normal conditions, Applied Surface Science vol. 254, pp.4899-4907, (2008).
DOI: 10.1016/j.apsusc.2008.01.142
Google Scholar
[27]
L. J. Wan, W. L. Gong, K. W. Jiang, et al. Selective formation of silicon nanowires on pre-patterned substrates, Applied Surface Science vol. 255, pp.3752-3758, (2009).
DOI: 10.1016/j.apsusc.2008.10.025
Google Scholar
[28]
K. Q. Peng, Y. J. Yan, S. P. Gao, et al. Dendrite-assisted growth of silicon nanowires in electroless metal deposition, Advanced Functional Materials vol. 13, pp.127-132, (2003).
DOI: 10.1002/adfm.200390018
Google Scholar
[29]
C. W. Nieh and L. J. Chen. Cross-sectional transmission electron-microscope study of solid-phase epitaxial-growth in BF2+-implanted (001)SI, Journal of Applied Physics vol. 60, pp.3546-3549, (1986).
DOI: 10.1063/1.337609
Google Scholar
[30]
H. Habuka, T. Suzuki, S. Yamamoto, et al. Dominant rate process of silicon surface etching by hydrogen chloride gas, Thin Solid Films vol. 489, pp.104-110, (2005).
DOI: 10.1016/j.tsf.2005.04.121
Google Scholar