[1]
H. Arakawa,M. Shiokawa,O. Imamura,M. Maeda, Novel bioluminescent assay of alkaline phosphatase using adenosine-3'-phosphate-5'-phos phosulfate as substrate and the luciferin-luciferase reaction and its application,. Anal. Biochem. 2003, 314, 206-211.
DOI: 10.1016/s0003-2697(02)00657-7
Google Scholar
[2]
M. Masson O.V. Runarsson,F. Johannson,M. Aizawa, 4-Amino-1-naphthyl phosphate as a substrate for the amperometric detection of alkaline phosphatase activity and its application for immunoassay,. Talanta. 2004, 64, 174-180.
DOI: 10.1016/j.talanta.2004.02.007
Google Scholar
[3]
A.T. Ali, C.B. Penny, J.E. Paiker, G. Psaras, F. Ikram, N.J. Crowther, The effect of alkaline phosphatase inhibitors on intracellular lipid accumulation in preadipocytes isolated from human mammary tissue,. Ann. Clin. Biochem. 2006, 43, 207-213.
DOI: 10.1258/000456306776865179
Google Scholar
[4]
X.J. Zhu C.Q. Jiang, 8-Quinolyl phosphate as a substrate for the fluorimetric determination of alkaline phosphatase,. Clinica Chimica Acta. 2007, 377, 150-153.
DOI: 10.1016/j.cca.2006.09.015
Google Scholar
[5]
S.D. Jackson, H.B. Halsall, A.J. Pesce, W.R. Heineman, Determination of serum alkaline phosphatase activity by electrochemical detection with flow injection analysis,. Fr. J. Anal. Chem. 1993, 346, 859-862.
DOI: 10.1007/bf00321305
Google Scholar
[6]
M. Sanchez-Cabezudo J.M. Fernandez-Romero,D. Luquedecastrom, Fluorimetric determination of alkaline phosphatase activity in human serum by use of a flow-through biosensor,. J. Biotech. 1994, 37, 143-149.
DOI: 10.1016/0168-1656(94)90005-1
Google Scholar
[7]
T.K. Christopoulos E.P. Diamandis, Enzymatically amplified time resolved fluorescence immunoassay with terbium chelates,. Anal. Chem. 1992, 64, 342-346.
DOI: 10.1021/ac00028a004
Google Scholar
[8]
N. Ichinose, S. Baba, T. Nakatsuji, N. Nishino, Fluorometric analysis of heat-stable alkaline phosphatase activity in human serum by means of high-performance liquid chromatogram,. Fr. J. Anal. Chem. 1993, 8, 610-612.
DOI: 10.1007/bf00325810
Google Scholar
[9]
J.J. Weiland, J.V. Anderson, B.B. Bigger, Inexpensive chemifluorescent detection of antibody-alkaline phosphatase conjugates on Western blots using 4-methylumbelliferyl phosphate, Analytical Biochemistry, 2007, 361, 140-142.
DOI: 10.1016/j.ab.2006.04.012
Google Scholar
[10]
X.J. Zhu Q.K. Liu C.Q. Jiang, 2-Carboxy-1-naphthyl phosphate as a substrate for the fluorimetric determination of alkaline phosphatase,. Anal. Chim. Acta. 2006, 570, 29-33.
DOI: 10.1016/j.aca.2006.03.067
Google Scholar
[11]
Y. Shirota,H. Kageyama, Charge carrier transporting molecular materials and their applications in devices,. Chemical Reviews. 2007, 107, 953-1010.
DOI: 10.1021/cr050143+
Google Scholar
[12]
A.V. Gaenko,A. Devarajan I.V. Tselinskii,U. Ryde, Structural and photo luminescence properties of excited state intramolecular proton transfer capable compounds-potential emissive and electron transport materials,. J Phys Chem A, 2006, 110, 7935-7942.
DOI: 10.1021/jp060646z
Google Scholar
[13]
Basavaprabhu,N. Narendraa S.L. Ravi V.S. Vommina, T3P® (propyl phosphonic anhydride) mediated conversion of carboxylic acids into acid azides and one-pot synthesis of ureidopeptides,. Tetrahedron Lett, 2010, 51: 3002-3005.
DOI: 10.1016/j.tetlet.2010.04.002
Google Scholar
[14]
J. Ouyang,C. Ouyang,F. Yuki,Y. Nakano,T. Shado,T. Nagano, Synthesis and fluorescent properties of 2-(1H-benzimidazol-2-yl)-phenol derivatives,J. Heterocyclic Chem. 2004, 41, 359- 365.
DOI: 10.1002/jhet.5570410309
Google Scholar
[15]
F.S. Liang L.X. Wang D.G. Ma,X.B. Jing F.S. Wang, Oxadiazole-con taining material with intense blue phosphorescence emission for organic light-emitting diodes,. Appl Phys Lett, 2002, 81, 4-6. Scheme1. Synthesis of disodium salt of 2-(5-phenyl-1, 3, 4-oxadiazol-2-yl) phenyl phosphate Fig. 1 Fluorescent emission spectrum of OXD Scheme 2 Dependence of normal and tautomer Emission on OXD Fig. 3 Fluorescent emission spectrum of OXDP +ALP Scheme 3 Principle of fluorescent determination of ALP using OXDP as a substrate Fig. 4 Effect of OXDP concentration on fluorescence intensity reduction Fig. 5 The Line Weaver–Burk linearization Table 1 Determination of ALP activity in human serum samples Sample Colorimetric Detn (U/L) Fluorimetric Detn (U/L) Relative error (%) Found RSD(n=3) 1 71. 5 72. 6±1. 14 0. 93 101. 5 2 53. 8 54. 1±2. 09 2. 29 100. 6 3 35. 6 36. 1±1. 99 3. 27 101. 4 4 97. 6 99. 1±1. 94 1. 16 101. 6 5 44. 6 46. 4±1. 85 2. 36 104. 1.
Google Scholar