[1]
D. Shechtman, I. Blech, D. Gratias and J. W. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., vol. 53, pp.1951-1954, (1984).
DOI: 10.1103/physrevlett.53.1951
Google Scholar
[2]
M. Kohmoto, B. Sutherland and K. Iguchi, Localization in optics: quasiperiodic media, Phys. Rev. Lett., vol. 58, pp.2436-2438, (1987).
DOI: 10.1103/physrevlett.58.2436
Google Scholar
[3]
W. Gellermann, M. Kohmoto, B. Sutherland and P. C. Taylor, Localization of light in Fibonacci dielectric multilayers, Phys. Rev. Lett., vol. 72, pp.633-636, (1994).
DOI: 10.1103/physrevlett.72.633
Google Scholar
[4]
G. Gumbs and M. K. Ali, Dynamical maps cantor spectra, and localiztion for Fibonacci and related quasiperiodic lattices, Phys. Rev. Lett., vol. 60, pp.1081-1084, (1988).
DOI: 10.1103/physrevlett.60.1081
Google Scholar
[5]
G. Gumbs and M. K. Ali, Scaling and eigenstates for a class of onedimensional quasiperiodic lattices, J. Phys. A, vol. 21, pp. L517-L521, (1988).
DOI: 10.1088/0305-4470/21/9/007
Google Scholar
[6]
R. Riklund and M. Severin, Optical properties of perfect and nonperfect quasi-periodic multilayers: a comparison with periodic and disordered multilayers, J. Phys. C vol. 21, pp.3217-3228, (1988).
DOI: 10.1088/0022-3719/21/17/012
Google Scholar
[7]
M. Dulea, M. Severin, and R. Riklund, Transmission of light through deterministic aperiodic non-Fibonaccian multilayers, Phys. Rev. B, vol. 42, pp.3680-3689, (1990).
DOI: 10.1103/physrevb.42.3680
Google Scholar
[8]
X. G. Wang, S. H. Pan and G. Z. Yang, Antitrace Maps and Light Transmission Coefficients for Generalized Fibonacci Multilayers, Chin. Phys. Lett., vol. 18, pp.80-81, (2001).
DOI: 10.1088/0256-307x/18/1/328
Google Scholar
[9]
A. Klauzer-Kruszyna, W. Salejda, and M. Tyc, Polarized light transmission through generalized Fibonacci multilayers: I. Dynamical maps approach, Optik, vol. 115, pp.257-266, (2004).
DOI: 10.1078/0030-4026-00360
Google Scholar
[10]
X. Huang and Y. Liu, Spectral Structure and Gap-Labeling Properties for a New Class of One-Dimensional Quasilattices, Chin. Phys. Lett., vol. 9, pp.609-612, (1992).
DOI: 10.1088/0256-307x/9/11/012
Google Scholar
[11]
X. Huang, Y. Liu, and D. Mo, Transmission of light through a class of quasiperiodic multilayers, Solid State Commun. vol. 87, pp.601-604, (1993).
DOI: 10.1016/0038-1098(93)90120-c
Google Scholar
[12]
X. Fu, Y. Liu, P. Zhou, and W. Sritrakool, Perfect self-similarity of energy spectra and gap-labeling properties in one-dimensional Fibonacciclass quasilattices, Phys. Rev. B, vol. 55, pp.2882-2889, (1997).
DOI: 10.1103/physrevb.55.2882
Google Scholar
[13]
X. Yang, Y. Liu, and X. Fu, Transmission properties of light through the Fibonacci-class multilayers, Phys. Rev. B, vol. 59, pp.4545-4548, (1999).
DOI: 10.1103/physrevb.59.4545
Google Scholar
[14]
S. Chattopadhyay and A. Chakrabarti, Hidden dimmers and their effect on the optical and electronic transmission in Thue-Morse aperiodic structures, J. Phys.: Condens. Matter, vol. 12, pp.5681-5689, (2000).
DOI: 10.1088/0953-8984/12/26/314
Google Scholar
[15]
M. Kola·r, M. K. Ali, and F. Nori, Generalized Thue-Morse chains and their physical properties, Phys. Rev. B, vol. 43, pp.1034-1047, (1991).
DOI: 10.1103/physrevb.43.1034
Google Scholar
[16]
C. L. Roy, A. Kran, and C. Basu, A study of Landauer resistance and related issues of the generalized Thue-Morse lattice, J. Phys.: Condens. Matter, vol. 7, pp.1843-1853, (1995).
DOI: 10.1088/0953-8984/7/9/010
Google Scholar
[17]
X. Wang, U. Grimm, and M. Schreiber, Trace and antitrace maps for aperiodic sequences: Extensions and applications, Phys. Rev. B, vol. 62, pp.14020-14031, (2000).
DOI: 10.1103/physrevb.62.14020
Google Scholar
[18]
F. Chen and X. Yang, Transmission properties of light through the family A of Generalized Thue-Morse multilayers, Mod. Phys. Lett. B, vol. 19, pp.655-661, (2005).
DOI: 10.1142/s0217984905008669
Google Scholar
[19]
L. Wang, X. Yang, and T. Chen, Second harmonic generation in generalized Thue-Morse ferroelectric superlatices, Physica B, vol. 242, pp.3425-3430, (2009).
DOI: 10.1016/j.physb.2009.05.027
Google Scholar
[20]
X. Yang, Transparent-component-decimation method for studying the optical transmission of binary aperiodic superlattices, Phys. Rev. B, vol. 74, p.075408, (2006).
DOI: 10.1103/physrevb.74.075408
Google Scholar