Transparent-Component-Decimation Method for Studying the Optical Transmission of One Kind of Aperiodic Superlattices

Article Preview

Abstract:

Transparent-component-decimation (TCD) method may simplify the aperiodic sequences to the simplest form and one can obtain the transmissive characteristics without complicated calculations. Applying this method to the Family A of Generalized Thue-Morse [FAGTM(n)] aperiodic superlattices, we obtain directly the formulas of the transmission coefficients at the central wavelength. The results are in accord with the previous published results. It shows that the TCD method can be used to study optical transmission normally through aperiodic multilayers directly and exactly and has bright future.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1215-1220

Citation:

Online since:

November 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Shechtman, I. Blech, D. Gratias and J. W. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., vol. 53, pp.1951-1954, (1984).

DOI: 10.1103/physrevlett.53.1951

Google Scholar

[2] M. Kohmoto, B. Sutherland and K. Iguchi, Localization in optics: quasiperiodic media, Phys. Rev. Lett., vol. 58, pp.2436-2438, (1987).

DOI: 10.1103/physrevlett.58.2436

Google Scholar

[3] W. Gellermann, M. Kohmoto, B. Sutherland and P. C. Taylor, Localization of light in Fibonacci dielectric multilayers, Phys. Rev. Lett., vol. 72, pp.633-636, (1994).

DOI: 10.1103/physrevlett.72.633

Google Scholar

[4] G. Gumbs and M. K. Ali, Dynamical maps cantor spectra, and localiztion for Fibonacci and related quasiperiodic lattices, Phys. Rev. Lett., vol. 60, pp.1081-1084, (1988).

DOI: 10.1103/physrevlett.60.1081

Google Scholar

[5] G. Gumbs and M. K. Ali, Scaling and eigenstates for a class of onedimensional quasiperiodic lattices, J. Phys. A, vol. 21, pp. L517-L521, (1988).

DOI: 10.1088/0305-4470/21/9/007

Google Scholar

[6] R. Riklund and M. Severin, Optical properties of perfect and nonperfect quasi-periodic multilayers: a comparison with periodic and disordered multilayers, J. Phys. C vol. 21, pp.3217-3228, (1988).

DOI: 10.1088/0022-3719/21/17/012

Google Scholar

[7] M. Dulea, M. Severin, and R. Riklund, Transmission of light through deterministic aperiodic non-Fibonaccian multilayers, Phys. Rev. B, vol. 42, pp.3680-3689, (1990).

DOI: 10.1103/physrevb.42.3680

Google Scholar

[8] X. G. Wang, S. H. Pan and G. Z. Yang, Antitrace Maps and Light Transmission Coefficients for Generalized Fibonacci Multilayers, Chin. Phys. Lett., vol. 18, pp.80-81, (2001).

DOI: 10.1088/0256-307x/18/1/328

Google Scholar

[9] A. Klauzer-Kruszyna, W. Salejda, and M. Tyc, Polarized light transmission through generalized Fibonacci multilayers: I. Dynamical maps approach, Optik, vol. 115, pp.257-266, (2004).

DOI: 10.1078/0030-4026-00360

Google Scholar

[10] X. Huang and Y. Liu, Spectral Structure and Gap-Labeling Properties for a New Class of One-Dimensional Quasilattices, Chin. Phys. Lett., vol. 9, pp.609-612, (1992).

DOI: 10.1088/0256-307x/9/11/012

Google Scholar

[11] X. Huang, Y. Liu, and D. Mo, Transmission of light through a class of quasiperiodic multilayers, Solid State Commun. vol. 87, pp.601-604, (1993).

DOI: 10.1016/0038-1098(93)90120-c

Google Scholar

[12] X. Fu, Y. Liu, P. Zhou, and W. Sritrakool, Perfect self-similarity of energy spectra and gap-labeling properties in one-dimensional Fibonacciclass quasilattices, Phys. Rev. B, vol. 55, pp.2882-2889, (1997).

DOI: 10.1103/physrevb.55.2882

Google Scholar

[13] X. Yang, Y. Liu, and X. Fu, Transmission properties of light through the Fibonacci-class multilayers, Phys. Rev. B, vol. 59, pp.4545-4548, (1999).

DOI: 10.1103/physrevb.59.4545

Google Scholar

[14] S. Chattopadhyay and A. Chakrabarti, Hidden dimmers and their effect on the optical and electronic transmission in Thue-Morse aperiodic structures, J. Phys.: Condens. Matter, vol. 12, pp.5681-5689, (2000).

DOI: 10.1088/0953-8984/12/26/314

Google Scholar

[15] M. Kola·r, M. K. Ali, and F. Nori, Generalized Thue-Morse chains and their physical properties, Phys. Rev. B, vol. 43, pp.1034-1047, (1991).

DOI: 10.1103/physrevb.43.1034

Google Scholar

[16] C. L. Roy, A. Kran, and C. Basu, A study of Landauer resistance and related issues of the generalized Thue-Morse lattice, J. Phys.: Condens. Matter, vol. 7, pp.1843-1853, (1995).

DOI: 10.1088/0953-8984/7/9/010

Google Scholar

[17] X. Wang, U. Grimm, and M. Schreiber, Trace and antitrace maps for aperiodic sequences: Extensions and applications, Phys. Rev. B, vol. 62, pp.14020-14031, (2000).

DOI: 10.1103/physrevb.62.14020

Google Scholar

[18] F. Chen and X. Yang, Transmission properties of light through the family A of Generalized Thue-Morse multilayers, Mod. Phys. Lett. B, vol. 19, pp.655-661, (2005).

DOI: 10.1142/s0217984905008669

Google Scholar

[19] L. Wang, X. Yang, and T. Chen, Second harmonic generation in generalized Thue-Morse ferroelectric superlatices, Physica B, vol. 242, pp.3425-3430, (2009).

DOI: 10.1016/j.physb.2009.05.027

Google Scholar

[20] X. Yang, Transparent-component-decimation method for studying the optical transmission of binary aperiodic superlattices, Phys. Rev. B, vol. 74, p.075408, (2006).

DOI: 10.1103/physrevb.74.075408

Google Scholar