[1]
WHO, World Health Organization Guidelines for Drinking Water Quality. Vol. 1, Geneva, (1984).
Google Scholar
[2]
LeChevallier M. W. and McFeters G. A., Interactions between heterotrophic plate count bacteria and coliform organisms. Applied and Environmental Microbiology, vol. 49. no. 5, pp.1338-1341, (1985).
DOI: 10.1128/aem.49.5.1338-1341.1985
Google Scholar
[3]
Percival S. L. and Walker J. T. , Potable water and biofilms: a review of public health implications. Biofouling, vol. 42, no. 2, pp.99-115, (1999).
DOI: 10.1080/08927019909378402
Google Scholar
[4]
LeChevallier M. W., Schulz W. and Lee R. G., Bacterial nutrients in drinking water. Applied and Environmental Microbiology, vol. 57, no. 3, pp.857-862, (1991).
DOI: 10.1128/aem.57.3.857-862.1991
Google Scholar
[5]
Van der Kooij D., Assimilable organic carbon as an indicator of bacterial regrowth. Journal of America Water Works Association, vol. 84, no. 2, pp.57-65, (1992).
DOI: 10.1002/j.1551-8833.1992.tb07305.x
Google Scholar
[6]
Gibbs R. A., Scutt J. E. and Croll B. J., Assimilable organic carbon concentrations and bacterial numbers in a water distribution system. Water Science and Technology, vol. 27, pp.159-166, (1993).
DOI: 10.2166/wst.1993.0340
Google Scholar
[7]
Miettinen I. T., Vartiainen T. and Martikainen P. J., Contamination of drinking water. Nature, vol. 381, pp.654-655, (1996).
DOI: 10.1038/381654b0
Google Scholar
[8]
Miettinen I. T., Vartininen T. and Martikainen P. J., Microbial growth and assimilable organic carbon in Finnish drinking waters. Water Science and Technology, vol. 35, pp.301-306, (1997).
DOI: 10.2166/wst.1997.0750
Google Scholar
[9]
Sathasivan A., Ohgaki S., Yamamoto K. and Kamiko N., Role of inorganic phosphorus in controlling regrowth in water distribution system. Water Science and Technology, vol. 35, no. 8, pp.37-44, (1997).
DOI: 10.2166/wst.1997.0295
Google Scholar
[10]
Sathasivan A. and Ohgaki S. Application of new bacterial regrowth potential method for water distribution system - a clear evidence of phosphorus limitation. Water Research, vol. 33, no. 1, pp.137-144, (1999).
DOI: 10.1016/s0043-1354(98)00158-4
Google Scholar
[11]
Jiang D. L. and Zhang. X. J. Study on phosphorus and bacterial regrowth in drinking water. Huanjing Kexue, vol. 25, no. 5, pp.57-60, September, 2004. (in Chinese).
Google Scholar
[12]
Polanskaa M., Huysmanb K. and van Keera C., Investigation of microbially available phosphorus (MAP) in Flemish drinking water. Water Research, vol. 39, no. 11, pp.2267-2272, (2005).
DOI: 10.1016/j.watres.2005.04.019
Google Scholar
[13]
Reasoner D. J. and Geldreich E. E., A new medium for the enumeration and subculture of bacteria from potable water. Applied and Environmental Microbiology, vol. 49, no. 1, pp.1-7, (1985).
DOI: 10.1128/aem.49.1.1-7.1985
Google Scholar
[14]
Lehtola M. J., Miettinen I. T., Vartiainen T., Myllykangas T. and Martikainen P. J., Changes in content of microbially available phosphorus, assimilable organic carbon and microbial growth potential during drinking water treatment processes. Water Research, vol. 36, pp.3681-3690, (2002).
DOI: 10.1016/s0043-1354(02)00100-8
Google Scholar
[15]
Liu W., Wu H., Wang Z., Ong S. L., Hu J. Y. and Ng W. J., Investigation of assimilable organic carbon (AOC) and bacterial regrowth in drinking water distribution system. Water Research, vol. 36, pp.891-898, (2002).
DOI: 10.1016/s0043-1354(01)00296-2
Google Scholar
[16]
Van der Kooij D., Visser A. and Hijnen W. A. M. Determination the concentration of easily assimilable organic carbon in drinking water. Journal of America Water Works Association, vol. 74, no. 10, pp.540-545, (1982).
DOI: 10.1002/j.1551-8833.1982.tb05000.x
Google Scholar
[17]
Anderson J. P. E. and Domsch K. H., Quantities of plant nutrients in the microbial biomass of selected soils. Soil Science, vol. 130, no. 4, pp.211-216, (1980).
DOI: 10.1097/00010694-198010000-00008
Google Scholar
[18]
Gächter P. and Meyer J. S. The role of microorganisms in mobilization and fixation of phosphorus in sediments. Hydrobiologia, vol. 253, pp.103-121, (1993).
DOI: 10.1007/bf00050731
Google Scholar
[19]
Lehtola M. J., Miettinen I. T., Vartiainen T. and Martikainen P. J., A new sensitive bioassay for determination of microbially available phosphorus in water. Applied and Environmental Microbiology, vol. 65, no. 5, pp.2032-2034, (1999).
DOI: 10.1128/aem.65.5.2032-2034.1999
Google Scholar
[20]
Jiang D. L., Lu W. and Zhang X. J., Research on determination of Microbially Available Phosphorus (MAP) in drinking water. Water & Wastewater Engineering, vol. 30, no. 4, pp.27-34, April, 2004. (in Chinese).
Google Scholar
[21]
Van der Wende E., Characklis W. G. and Smith D. B., Biofilm and bacterial drinking water quality. Water Research, vol. 23, no. 10, pp.1313-1322, (1989).
DOI: 10.1016/0043-1354(89)90193-0
Google Scholar
[22]
Donlan R. M. and Pipes W. O., Selected drinking water characteristics and attached microbial population density. Journal of America Water Works Association, vol. 80, no. 11, pp.70-76, (1988).
DOI: 10.1002/j.1551-8833.1988.tb03137.x
Google Scholar
[23]
Robertson W. and Brooks T., What role should heterotrophic plate count bacteria play in the treatment of distribution of drinking water. Proceeding of the NSF International / WHO Symposium on HPC Bacteria in drinking water – Public health implications? Geneva, Switzerland, pp.511-524, (2002).
Google Scholar