Constitutive Modelling of Sintering of 316L Stainless Steel Microsize Structures

Article Preview

Abstract:

Constitutive model is useful to predict the final shape of sintered microsize structures. In this paper, the contribution of lattice diffusion (Nabarro-Herring creep) is considered and a constitutive model is established to simulate densification of 316L stainless steel microsize structures fabricated by micro metal injection molding. The predictive capability of the model is verified by comparing the theoretical calculations with the experimental results. The influences of boundary energy on modeling results are discussed. It is found that the modeling results agree reasonably well with the experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

846-851

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Hessel, H. Löwe and F. Schönfeld, Micromixers-a review on passive and active mixing principles, Chem. Eng. Sci. Vol. 60 (2005), pp.2479-2501.

DOI: 10.1016/j.ces.2004.11.033

Google Scholar

[2] P. Imgrund, A. Rota, F. Petzoldt and A. Simchi, Manufacturing of multi-functional micro parts by two-component metal injection moulding, Int. J. Adv. Manuf. Technol. Vol. 33 (2007), pp.176-186.

DOI: 10.1007/s00170-006-0666-4

Google Scholar

[3] V. Piotter, B. Zeep, P. Norajitra R. Ruprecht, A.V.D. Weth and J. Hausselt, Development of a powder metallurgy process for tungsten components, Fus. Eng. Des. Vol. 83 (2008), pp.1517-1520.

DOI: 10.1016/j.fusengdes.2008.06.022

Google Scholar

[4] K. Okubo, S. Tanaka, H. Hamada and H. Ito, Compression process effects on filling density and replication properties of micro-surfaces during metal injection molding, Asia-Pac J Chem Eng Vol. 4 (2009), pp.133-139.

DOI: 10.1002/apj.211

Google Scholar

[5] H.Q. Yin, X.H. Qu and C.C. Jia, Fabrication of micro gear wheels by micro powder injection molding, J. Univ. Sci. Technol. B. Vol. 15 (2008), pp.480-483.

DOI: 10.1016/s1005-8850(08)60090-0

Google Scholar

[6] Z.Y. Liu, N.H. Loh, K.A. Khor and S.B. Tor, Sintering activation energy of powder injection molded 316L stainless steel, Scripta Mater. Vol. 44 (2001), pp.1131-1137.

DOI: 10.1016/s1359-6462(01)00664-9

Google Scholar

[7] L. Liu, N.H. Loh, B.Y. Tay, S.B. Tor, Y. Murakoshi and R. Maeda, Micro powder injection molding: Sintering kinetics of microstructured components, Scripta Mater. Vo. 55 (2006), pp.1103-1106.

DOI: 10.1016/j.scriptamat.2006.08.039

Google Scholar

[8] S. Shima and M. Oyane, Plasticity theory for porous metals, Int. J. Mech. Sci. Vol. 18 (1976), pp.285-292.

Google Scholar

[9] A.S. Helle, K.E. Easterling and M.F. Ashby, Hot Isostatic Pressing Diagrams: New Developments, Acta Metall. Vol. 33 (1985), pp.2163-2174.

DOI: 10.1016/0001-6160(85)90177-4

Google Scholar

[10] J. Besson and M. Abouaf, Rheology of porous alumina and simulation of hot Isostatic Pressing, J. Am. Ceram. Soc. Vol 75 (1992), pp.2165-2172.

DOI: 10.1111/j.1151-2916.1992.tb04479.x

Google Scholar

[11] K.T. Kim and Y.C. Jeon, Densification Behavior of 316L Stainless Steel Powder Under High Temperature, Mat. Sci. Eng. A Vol. 245 (1998), pp.64-71.

DOI: 10.1016/s0921-5093(97)00696-5

Google Scholar

[12] L. Liu, N.H. Loh, B.Y. Tay, S.B. Tor, H.Q. Yin and X.H. Qu, Investigation of final-stage sintering of various microsize structures prepared by micro powder injection molding, Appl Phys A Vol. 206 (2011), pp.1145-1151.

DOI: 10.1007/s00339-010-6060-y

Google Scholar

[13] J. Svoboda, H. Riedel and H. Zipse: Acta. Metall. Vol. 42 (1994), pp.435-443.

Google Scholar

[14] R.J. Brook, Controlled grain growth, in: Treatise on Materials Science and Technology 9, Academic Press, USA 1976, pp.331-364.

Google Scholar

[15] D. Gouvêa and R.H. R Castro, Sintering: the role of interface energies, Appl. Surf. Sci. Vol. 217 (2003), pp.194-201.

Google Scholar