Global-Based Salient Region Detection for Microscopic Image

Article Preview

Abstract:

The salient region detection has been a very important study in machine vision and image analysis. Reliable estimation of visual saliency allows appropriate processing of images without prior knowledge of their contents, and thus remains an important step in many computer vision tasks including image segmentation, object recognition, adaptive compression and image retrieval. This paper presents a global-based contrast region detection method. The color information and the relevance of spatial location were taken into account. Experimental results show that the proposed method compared with the existed methods, our method yielded better detection effect, more precise and low complexity, at the same time, the method was more applicable for salient region detection of microscopic image.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

607-611

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.-H Tian, S.-H Wan, L.-H Yue. Visual salient objects detection in natural scenes. Journal of Image And Graphics, 15(2010) 1650-1657.

Google Scholar

[2] G.-M Zhang, J.-P Yin, E. Zhu, L. Mao. Fast Visual Attention Model Algorithm Based on Approximate Gaussian Pyramids. Journal of Software, 20(2009) 3240-3253.

DOI: 10.3724/sp.j.1001.2009.03649

Google Scholar

[3] D. Wahher, L. Itti, M. Riesenhuber, et a1. Attentional selection for object recognition a gentle way. Lecture Notes in Computer Science, 2525(2002) 472-479.

DOI: 10.1007/3-540-36181-2_47

Google Scholar

[4] L. Itti, C. Koch, E. Niebur. Model of saliency-based visual attention for rapid scene analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence, 20(1998) 1254-1259.

DOI: 10.1109/34.730558

Google Scholar

[5] Y.-Q Hu, D. Rajan, L.-T Chia. Robust subspace analysis for detecting visual attention regions in images. Proceedings of the 13th Annual ACM International Conference on Multimedia, New York: ACM, (2005) 716-724.

DOI: 10.1145/1101149.1101306

Google Scholar

[6] O. L. Meur, P. L. Callet, D. Barbs, et a1. A coherent computational approach to model bottom-up visual attention. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(2006) 802-816.

DOI: 10.1109/tpami.2006.86

Google Scholar

[7] X.-D Hou, L.-Q Zhang. Saliency detection: a spectral residual approach. Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, New York: IEEE, (2007) 1-8.

DOI: 10.1109/cvpr.2007.383267

Google Scholar

[8] Z.-K Lu, W.-S Lin, X.-K Yang, et a1. Modeling visual attention's modulaiory after effects on visual sensitivity and quality evaluation. IEEE Transactions on Image Processing, 14(2005) 1928-1942.

DOI: 10.1109/tip.2005.854478

Google Scholar

[9] Y.-F. Ma and H.-J. Zhang. Contrast-based image attention analysis by using fuzzy growing. In ACM Multimedia, (2003) 374–381.

Google Scholar

[10] T. Liu, J. Sun, N.-N. Zheng, X.-O Tang, and S. H.Y. Learning to detect a salient object. IEEE TPAMI, 33(2011) 353-367.

Google Scholar

[11] S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware saliency detection. In CVPR, 2010.

DOI: 10.1109/cvpr.2010.5539929

Google Scholar

[12] Y. Zhai and M. Shah. Visual attention detection in video sequences using spatiotemporal cues. In ACM Multimedia, (2006) 815–824.

DOI: 10.1145/1180639.1180824

Google Scholar

[13] R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk. Frequency-tuned salient region detection. In CVPR, (2009)1597–1604.

DOI: 10.1109/cvpr.2009.5206596

Google Scholar

[14] M.-M Cheng, G.-X Zhang, N. J. Mitra, X.-L Huang, S.-M Hu. Global Contrast based Salient Region Detection. IEEE CVPR, (2011) 409-416.

DOI: 10.1109/cvpr.2011.5995344

Google Scholar