[1]
H. Watarai. Trends of Research and Development for Magnesium Alloys – Reducing the Weight of Structural Materials in Motor Vehicles. Science and Technology Trends, Quarterly Review, No. 18 (2006).
Google Scholar
[2]
I. Ostrovdky, Y. Henn. Present state and Future of Magnesium Application in Aerospace Industry. Int. Conference New Challenges in Aeronautics" ASTEC, 07, Moscow, (2007).
Google Scholar
[3]
T. Yokoyama. Impact Tensile Stress-strain Characteristics of Wrought Magnesium Alloys. Strain, Vol. 39 (2003) pp.167-75.
DOI: 10.1046/j.1475-1305.2003.00086.x
Google Scholar
[4]
K. Ishikawa, H. Watanabe, T. Mukai. High temperature compressive properties over a wide range of strain rates in an AZ31 magnesium alloy. Journal of Materials Science, Vol. 40 (2005) pp.1577-82.
DOI: 10.1007/s10853-005-0656-1
Google Scholar
[5]
T. Cheng-wan, Xu Shan-na, Lu Wang, C. Zhi-yong, W. Fu-chi, C. Hong-nian, Ma Hong-lei. Deformation behaviour of AZ31 magnesium alloy at different strain rates and temperatures. Transactions of Nonferrous Metals Society of China, 17 (2007).
Google Scholar
[6]
Suyuan, Y. 2010. The Microstructure Features and the Deformation Mechanism of a Fine Grained Magnesium Alloy under Dynamic Loading. Rev. Adv. Mater. Sci. 25, pp.122-127.
Google Scholar
[7]
Yang Yong-biao, W. Fu-chi, T. Cheng-wen, Wu Yuan-yuan, C . Hong-nian. Plastic deformation mechanism of AZ31 magnesium alloy under high strain rate compression. Nonferrous Metal Society China, Vol. 18 (2008) pp.1043-46.
DOI: 10.1016/s1003-6326(08)60178-8
Google Scholar
[8]
M. T. Tucker, M. F. Horstemeyer, P. M. Gullett, Haithem El Kadiri, W. R. Whittington. Anisotropic effects on the strain rate dependence of a wrought magnesium alloy. Scripta Materialia, Vol. 60 (2009) pp.182-85.
DOI: 10.1016/j.scriptamat.2008.10.011
Google Scholar
[9]
I. Ulacia, S. Yi, M. T. Perez-Prado, N. V. Dudamell, F. Galvez, D. Letzig, and I. Hurtado, Texture Evaluation of AZ31 Magnesium Alloy Sheet at High Strain Rates. A report based on the results of MAGNO2008 and MANUFACTURING Projects (2010).
DOI: 10.4028/www.scientific.net/msf.706-709.1255
Google Scholar
[10]
I. Ulacia, C. P. Salisbury, I. Hurtado, M. J. Worwick. Tensile characterization and constitutive modeling of AZ31B magnesium alloy sheet over a wide range of strain rates and temperatures. Journal of Materials Processing Technology, 211(2011).
DOI: 10.1016/j.jmatprotec.2010.09.010
Google Scholar
[11]
D. Hasenpouth, C. Salisbury, A. Bardelcik, M. J. Worwick. Constitutive behaviour of magnesium alloy sheet at high strain rates. A report.
DOI: 10.1051/dymat/2009202
Google Scholar
[12]
H. Kolsky. An investigation of the mechanical properties at very high strain rates of loading. Proc. Phys. Soc. B. Vol. 62 (1949) pp.676-701.
DOI: 10.1088/0370-1301/62/11/302
Google Scholar
[13]
E. Sukedai, T. Yokoyama. Investigation of tensile-compressive yield asymmetry and the role of deformation twin in extruded pure magnesium. Int. J. Mat. Res. 101 (2010), pp.736-740.
DOI: 10.3139/146.110332
Google Scholar