Experimental Research on Trajectory Control of Walking Rehabilitation Training Robot

Article Preview

Abstract:

In order to improve the effect of smooth motion, the impedance control is introduced into the control system of walking rehabilitation training robot. An impedance control strategy for active rehabilitation training model is proposed and analyzed, and an adaptive control algorithm is proposed on that basis. The experimental tests of three control methods including PD position servo control, impedance control and adaption control are implemented on the robot prototype. The experimental results show that the robot can continuously adjust its gait trajectory according to the human-robot interaction force to meet the expected gait characteristics under the latter two control strategies. The feasibility and validity of the two control strategies is proved, which will be used in active rehabilitation training.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

177-185

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Hesse, C. Bertelt, A. Schaffrin, M. Malezic, and K. H. Mauritz, Restoration of Gait in Nonamulatory Hemiparetic Patients by Treadmill Training with Partial Body-weight Support, Arch. Phys. Med. Rehabil., vol. 75, no. 10, Oct. 1994. p.1087–1093.

DOI: 10.1016/0003-9993(94)90083-3

Google Scholar

[2] M. Visitin, H. Barbeau, N. Korner-Bitensky, and N. E. Mayo, A New Approach toRetrain Gait in Stroke Patients through Body Weight Support and Treadmill Stimulation, Stroke, vol. 29, no. 6, Jun. 1998, p.1122–1128.

DOI: 10.1161/01.str.29.6.1122

Google Scholar

[3] Y. Laufer, R. Dickstein, Y. Chefez, and E. Marcovitz, The Effect of Treadmill Training on the Ambulation of Stroke Survivors in the Early Stages of Rehabilitation, J. Rehabil. Res. Dev., vol. 38, no. 1, Jan-Feb. 2001, p.69–78.

Google Scholar

[4] G. Colombo, J. Matthias, S. Reinhard and M. Volker. Treadmill Training of Paraplegic Patients Using a Robotic Orthosis, Journal of Rehabilitation Research and Development, vol. 37, no. 6, Nov. -dec., 2000, pp.693-700.

Google Scholar

[5] S. K. Banala, A. Kulpe and S. K. Agrawal, A pwered Leg Othosis for Gait Rehabilitation of Motor-Impaired Patients, Proc. IEEE International Conferrence on Robotics and Automation, IEEE Press, Apr. 2007, pp.4140-4145.

DOI: 10.1109/robot.2007.364115

Google Scholar

[6] K. K. Mankala, S. K. Banala and S. K. Agrawal, Passive Swing Assistive Exoskeletons for Motor-Incomplete Spinal Cord Injury Patients, Proc. IEEE International Conferrence on Robotics and Automation, IEEE Press, Apr. 2007, pp.3761-3766.

DOI: 10.1109/robot.2007.364055

Google Scholar

[7] C. Fang, W. Rencheng and J. Xiaohong, The Progress of Partial Body Weight Support Treadmill Robots, Chinese Journal of Rehabilitation Medicine, vol. 31, no. 2, Apr. 2008, pp.366-368.

Google Scholar

[8] R. Riener, L. Lünenburger and S. Jezernik, Patient-cooperative Strategies for Robot-Aided Treadmill Training: First Experimental Results, IEEE Transactions on Neuronal Systems and Rehabilitation Engineering, vol. 3, no. 13, Mar. 2005, pp.380-394.

DOI: 10.1109/tnsre.2005.848628

Google Scholar

[9] M. Bernhardt,M. Frey, G. Colombo and R. Riener, Hybrid Force-Position Control Yields Cooperative Behaviour of the Rehabilitation Robot LOKOMAT, Proc. IEEE 9th International Conference on Rehabilitation Robotics, IEEE Press, Jun. 2005. pp.536-539.

DOI: 10.1109/icorr.2005.1501159

Google Scholar

[10] E. H. Asseldonk, J. F. Veneman, R. Ekkelenkamp, et al, The Effects on Kinematics and Muscle Activity of Walking in a Robotic Gait Trainer during Zero-force Control, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 16, no. 4, Aug. 2008, pp.360-370.

DOI: 10.1109/tnsre.2008.925074

Google Scholar

[11] R. Ekkelenkamp, J. F. Veneman, H. Kooij van der, LOPES: Selective Control of Gait Functions during the Gait Rehabilitation of CVA Patients, Proc. IEEE 9th International Conference on Rehabilitation Robotics, IEEE Press, Jun. 2005, pp.361-364.

DOI: 10.1109/icorr.2005.1501120

Google Scholar

[12] J. Ming-Shaung, K. Chou-ching, L. Dong-Huang, H. Ing-Shiou and C. Shu-Min, A Rehabilitation Robot with Force-position Hybrid Fuzzy Controller: Hybrid Fuzzy Control of Rehabilitation Robot, IEEE Trans Neural Syst Rehabil Eng, vol. 13, no. 3, Sep. 2005, pp.349-358.

DOI: 10.1109/tnsre.2005.847354

Google Scholar

[13] D. Erol, N. Sarkar. Intelligent Control Framework for Robotic Rehabilitation after Stroke, Proc. IEEE International Conference on Robotics and Automation, IEEE Press, Apr. 2007, pp.1238-1243, doi: 10. 1109/ROBOT. 2007. 363154.

DOI: 10.1109/robot.2007.363154

Google Scholar

[14] Feng Zhiguo, Qian Jinwu, Zhang Yanan, etal. Biomechanical Design of the Powered Gait Orthosis, Proc. Proceedings of the 2007 International Conference on Robotics and Biomimetics, IEEE Press, Dec. 2007, pp.1698-1702.

DOI: 10.1109/robio.2007.4522421

Google Scholar