Largely Enhanced Figure of Merit for CoSb3 Thermoelectric Material by Introducing Disordered Structure

Article Preview

Abstract:

To enhance the Seebeck coefficient and reduce the thermal conductivity and meanwhile keep an excellent electrical conductivity, the disordered structure was introduced into the ordered CoSb3 nanocrystalline by increasing hot-pressing temperature. The results show that the introduced disordered structure can increase the Seebeck coefficient from 125 VK-1 to 390 VK-1 measured at 773K, the thermal conductivity can be reduced from 1.94 Wm-1K-1 to 1.73 Wm-1K-1. Even though the electrical conductivity is decreased from 74000 Sm-1 to 14000 Sm-1, a largely enhanced figure of merit of 1.21 at 773 K still can be obtained for the sample hot-pressed at 943 K. Therefore, introducing the disordered structure into an ordered structure can be considered as an effective way to enhance the figure of merit.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-91

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science 321 (2008) 1457-1462.

DOI: 10.1126/science.1158899

Google Scholar

[2] G.J. Snyder, E.S. Toberer, Complex thermoelectric materials, Nature 7 (2008) 105-114.

Google Scholar

[3] B.C. Sales, Electron crystals and phonon glasses: a new path to improved thermoelectric materials, Mater. Res. Soc. Bull., 23 (1998) 15-21.

DOI: 10.1557/s0883769400031419

Google Scholar

[4] Z.M. He, C. Stiewe, D. Platzek, G. Karpinski, E. Müller, S. Li, M. Toprak, M. Muhammed, Thermoelectric properties of hot-pressed skutterudite CoSb3, J. Appl. Phys., 101 (2007) 053713.

DOI: 10.1063/1.2538036

Google Scholar

[5] G.S. Nolas, J. Yang, H. Takizawa, Transport properties of germanium-filled CoSb3, Appl. Phys. Lett., 84 (2004) 5210-5211.

DOI: 10.1063/1.1765205

Google Scholar

[6] G.A. Lamberton, J.R.H. Tedstrom, T.M. Tritt, Thermoelectric properties of Yb-filled Ge-compensated CoSb3 skutterudite materials, J. Appl. Phys., 97 (2005) 113715.

DOI: 10.1063/1.1927702

Google Scholar

[7] P.C. Zhai, W.Y. Zhao, Y. Li, L.S. Liu, X.F. Tang, Q.J. Zhang, M. Niino, Nanostructures and enhanced thermoelectric properties in Ce-filled skutterudite bulk materials, Appl. Phys. Lett., 89 (2006) 052111.

DOI: 10.1063/1.2234842

Google Scholar

[8] H. Li, X.F. Tang, X.L. Su, Q.J. Zhang, Preparation and thermoelectric properties of high-performance Sb additional Yb0. 2Co4Sb12+y bulk materials with nanostructure, Appl. Phys. Lett., 92 (2008) 202114.

DOI: 10.1063/1.2936277

Google Scholar

[9] P.N. Alboni, X. Ji, J. He, N. Gothard, T.M. Tritt, Thermoelectric properties of La0. 9CoFe3Sb12–CoSb3 skutterudite nanocomposites, J. Appl. Phys., 103 (2008) 113707.

DOI: 10.1063/1.2937904

Google Scholar

[10] B.C. Sales, Smaller is cooler, Science, 295 (2002) 1248-1249.

Google Scholar

[11] J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states, Science, 321 (2008) 554-558.

DOI: 10.1126/science.1159725

Google Scholar

[12] C.C. Yang, J. Armellin, S. Li, Determinants of thermal conductivity and diffusivity in nanostructural semiconductors, J. Phys. Chem. B, 112 (2008) 1482-1486.

DOI: 10.1021/jp710588z

Google Scholar

[13] A. Majumdar, Thermoelectricity in semiconductor nanostructures, Science, 306 (2004) 777-778.

Google Scholar

[14] X. Shi, H. Kong, C.P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, W. Zhang, Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites, Appl. Phys. Lett., 92 (2008) 182101.

DOI: 10.1063/1.2920210

Google Scholar

[15] K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis, Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit, Science, 303 (2004) 818-822.

DOI: 10.1002/chin.200417240

Google Scholar

[16] B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, Science, 320 (2008) 634-639.

DOI: 10.1126/science.1156446

Google Scholar

[17] X.X. Ni, G.C. Liang, J.S. Wang, B.W. Li, Disorder enhances thermoelectric figure of merit in armchair graphane nanoribbons, Appl. Phys. Lett., 95 (2009) 192114.

DOI: 10.1063/1.3264087

Google Scholar

[18] T.J. Zhu, F. Yan, X.B. Zhao, S.N. Zhang, Y. Chen, S.H. Yang, Preparation and thermoelectric properties of bulk in situ nanocomposites with amorphous/nanocrystal hybrid structure, J. Phys. D: Appl. Phys., 40 (2007) 6094-6097.

DOI: 10.1088/0022-3727/40/19/049

Google Scholar

[19] S.K. Hsiung, R. Wang, Thermoelectric properties of splat-cooled amorphous In20Te80, Ga20Te80, and Ge15Te85, J. Appl. Phys., 49 (1978) 280-284.

Google Scholar

[20] A. Abdelghany, S.N. Elsayed, D.M. Abdelwahab, N.H. Mousa, Electrical conductivity and thermoelectric power of AgSbSe, in the solid and liquid states, Mater. Chem. Phys., 44 (1996) 277-280.

DOI: 10.1016/0254-0584(96)80069-1

Google Scholar

[21] P.X. Lu, Z.G. Shen, X. Hu, Effects of solvents and Sb sources on the morphologies of LaFe3CoSb12 nanopowders made by the hydro/solvo thermal method, J. Mater. Res., 24 (2009) 2873-2879.

DOI: 10.1557/jmr.2009.0363

Google Scholar

[22] G.J. Long, R.P. Hermann, F. Grandjean, E.E. Alp, W. Sturhahn, C.E. Johnson, D.E. Brown, O. Leupold, R. Rüffer, Strongly decoupled europium and iron vibrational modes in filled skutterudites, Phys. Rev. B, 71 (2005) 140302(R).

DOI: 10.1103/physrevb.71.140302

Google Scholar

[23] G.S. Nolas, C.A. Kendziora, H. Takizawa, Polarized Raman-scattering study of Ge and Sn-filled CoSb3, J. Appl. Phys., 94 (2003) 7440-7444.

DOI: 10.1063/1.1628377

Google Scholar

[24] P.X. Lu, Z.G. Shen, X. Hu, Effects of the voids filling on the lattice vibrations for the CoSb3-based thermoelectric materials—Raman scattering spectra and theoretical study, Phys. B, 405 (2010) 2589-2592.

DOI: 10.1016/j.physb.2010.03.040

Google Scholar