The Micro-Indentation Detection of Multilayer Structured Transparent Film Based on Dark Field Illumination

Article Preview

Abstract:

It is difficult to keep the precise conveyance in film discontinuous winding system, while there are no etch or print marks on the transparent film. Based on dark field illumination theory, a micro-indentation detection method is proposed for multilayer structured transparent film roll-to-roll processing. Two parallel strip lights are involved in the vision system to illuminate the indentation at a low angle, which ensures that the distinct image of the cutting indentation can be obtained in reflection and diffuse homogeneous lights. The measurement of micro-indentations can be used to evaluate the film conveying positioning accuracy and calculate the compensation of film feeding position control. An experiment platform was established to show the efficiency and feasibility of proposed scheme. Experimental results showed that the micro-indentation detection method, based on dark field illumination, is successful to increase the feeding precision of multilayer structured transparent film discontinuous winding system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1043-1048

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Huang, J. Chen, Z. Yin and Y. Xiong, Ieee Trans. Comp. Pack. Man. Vol. 1 (2011), pp.1368-1377.

Google Scholar

[2] S. Ahn, L. Guo, Adv. Mater. Vol. 20 (2008), pp.2044-2049.

Google Scholar

[3] K. Jain, M. Klosner, M. Zemel, Proc. of Ieee Vol. 93 (2005), pp.1500-1510.

Google Scholar

[4] J. Jin, Mater. Today Vol. 9 ( 2006), pp.46-52.

Google Scholar

[5] Y. Kim, H. Kim and H. Yoo, Ieee Trans. Adv. Pack. Vol. 33 (2006), pp.196-205.

Google Scholar

[6] M. Ellis, M. Spakovsky and D. Nelson, Proc. of Ieee Vol. 89 (2001), pp.1808-1818.

Google Scholar

[7] F. Krebs, Sol. Energy Mater. Sol. Cells Vol. 93 (2009), pp.394-412.

Google Scholar

[8] J. Rogers, T. Someya and Y. Huang, Sci. Vol. 327 (2010), pp.1603-1607.

Google Scholar

[9] J. Chen, Z. Yin, Y. Xiong and J. Quan, Ieee Int. Conf. on Inf. Autom. (2009), pp.265-270.

Google Scholar

[10] R. Raisutis, R. Kazys, L. Mazeika, Instru. Meas. Vol. 57 (2008), pp.2846-2855.

Google Scholar

[11] U. Hasar, Microwave Theory and Tech., Vol. 57 (2009), pp.1595-1601.

Google Scholar

[12] O. Koysal, D. Onal, S. Ozder, and F. Ecevit, Opt. Commun. Vol. 205 (2002), pp.1-6.

Google Scholar

[13] X. Liu, Y. Huang, and J. Kang, J. Biomed. Opt. Vol. 16 (2011).

Google Scholar

[14] T. Piper, J. Piper, Microsc. Microanal. Vol. 18 (2012), pp.343-352.

Google Scholar

[15] H. Weinkauf, B. Brehm, Biotechnol. J. Vol.4 (2009), pp.871-879.

Google Scholar

[16] Y. Huang, D. Kim, Nanoscale, Vol. 3 (2011), pp.3228-3232.

Google Scholar

[17] Z. Xie, L. Wang, and H. Zhang, Appl. Opt. Vol.48 (2009), pp.3204-3211.

Google Scholar

[18] K. Shin, J. Jang, H. Kang, and S. Song, Ieee Trans. Ind. Appl. Vol. 39 (2003), pp.1422-1428.

Google Scholar

[19] J. Lee, C. Choi, S. Song, S. Sul and D. Hynn, Ieee Ind. Appl. Conf. Vol. 4 (2000), pp.2662-2667.

Google Scholar

[20] S. Nagarkatti, F. Zhang, C. Rahn, and D. Dawson, J. Dyn. Syst. Meas. Control. Vol. 122 (2000), pp.445-453.

Google Scholar

[21] N. Elber, R. Arnason, G. Michaelis, and N. D'Sa, Ieee Trans. Ind. Appl. Vol. 29 (1993), pp.727-739.

Google Scholar