[1]
N.L. Ranganathan, E. Liao, L. Linn, W.S. Lee, Vincent, O.K. Navas, V. Kripesh, N. Balasubramanian, Integration of high aspect ratio tapered silicon via for silicon carrier fabrication, IEEE Trans. Adv. Packag. 32 (2009) 62–71.
DOI: 10.1109/tadvp.2008.2003350
Google Scholar
[2]
Y.H. Lee, K.J. Choi, Analysis of silicon via hole drilling for wafer level chip stacking by UV laser, Int. J. Precision Eng. Manuf. 11 (2010) 501–507.
DOI: 10.1007/s12541-010-0055-7
Google Scholar
[3]
B. Tan, K. Venkatakrishnan, Nd-YAG laser microvia drilling for interconnection application, J. Micromech. Microeng. 17 (2007) 1511–1517.
DOI: 10.1088/0960-1317/17/8/013
Google Scholar
[4]
B. Tan, Deep micro hole drilling in a silicon substrate using multi-bursts of nanosecond UV laser pulses, J. Micromech. Microeng. 16 (2006) 109–112.
DOI: 10.1088/0960-1317/16/1/015
Google Scholar
[5]
K. Venkatakrishnan, B. Tan, Interconnect microvia drilling with a radially polarized laser beam, J. Micromech. Microeng. 16 (2006) 2603–2607.
DOI: 10.1088/0960-1317/16/12/013
Google Scholar
[6]
C. W. Tang, H. T. Young, K. M. Li, Innovative through-silicon-via formation approach for wafer-level packaging applications, J. Micromech. Microeng. 22 (2012) 045019.
DOI: 10.1088/0960-1317/22/4/045019
Google Scholar
[7]
M. Steinert, J. Acker, M. Krause, S. Oswald, K. Wetzig, Reactive species generated during wet chemical etching of silicon in HF/HNO3 mixtures, J. Physics Chem. B. 110 (2006) 11377–11382.
DOI: 10.1021/jp0608168
Google Scholar
[8]
H. Robbins, B. Schwartz, Chemical etching of silicon I: the system of HF, HNO3, and H2O, J. Electrochem. Soc. 106 (1959) 505–508.
Google Scholar
[9]
H. Robbins, B. Schwartz, Chemical etching of silicon II: the system HF, HNO3, H2O, and HC2H3O, J. Electrochem. Soc. 107 (1960) 108–111.
Google Scholar
[10]
B. Schwartz, H. Robbins, Chemical etching of silicon III: a temperature study in the acid system, J. Electrochem. Soc. 108 (1961) 365–372.
Google Scholar
[11]
N. Tosun, Determination of optimum parameters for multi-performance characteristics in drilling by using grey relational analysis, Int. J. Adv. Manuf. Technol. 28 (2006) 450–455.
DOI: 10.1007/s00170-004-2386-y
Google Scholar
[12]
R. S. Pawade, S.S. Joshi, Multi-objective optimization of surface roughness and cutting forces in high-speed turning of Inconel 718 using Taguchi grey relational analysis (TGRA). Int. J. Adv. Manuf. Technol. 56 (2011) 47–62.
DOI: 10.1007/s00170-011-3183-z
Google Scholar
[13]
C. J. Tzeng, Y. H. Lin, Y. K. Yang, M. C. Jeng, Optimization of turning operations with multiple performance characteristics using the Taguchi method and Grey relational analysis, J. Mater. Process. Technol. 209 (2009) 2753–2759.
DOI: 10.1016/j.jmatprotec.2008.06.046
Google Scholar
[14]
J. Kopac, P. Krajnik, Robust design of flank milling parameters based on grey-Taguchi method, J. Mater. Process. Technol. 191 (2007) 400–403.
DOI: 10.1016/j.jmatprotec.2007.03.051
Google Scholar
[15]
Y. S. Tarng, S.C. Juang, C.H. Chang, The use of grey-based Taguchi methods to determine submerged arc welding process parameters in hardfacing, J. Mater. Process. Technol. 128 (2002) 1–6.
DOI: 10.1016/s0924-0136(01)01261-4
Google Scholar