[1]
Nicholson, JK, Lindon, JC, and Holmes, E. Metabonomics,: understanding the metabolic responses of living systems to path physiological stimul via multivariate statistical analysis of biological NMR spectroscopic data . xenobiotica. 29(1999).
DOI: 10.1080/004982599238047
Google Scholar
[2]
Nicholson, J. K., Holmes, E., Lindon, J. C., & Wilson, I. D. The challenges of modeling mammalian biocomplexity. Nature Biotechnology. 22 (2004)1268–1274.
DOI: 10.1038/nbt1015
Google Scholar
[3]
Lewen Jia, Jing Chen , Peiyuan Yin . Serum metabonomics study of chronic renal failure by ultra performance liquid chromatography coupled with Q-TOF mass spectrometry. Metabolomics. 4 (2008)183–189.
DOI: 10.1007/s11306-008-0110-x
Google Scholar
[4]
Jinglin Zhou , Bin Xu , Jing Huang , Xiangming Jia, etal. 1H NMR-based metabonomic and pattern recognition analysis for detection of oralsquamous cell carcinoma. Clinica Chimica Acta 401 (2009) 8–13.
DOI: 10.1016/j.cca.2008.10.030
Google Scholar
[5]
Xiangli Zen. the theory of wavelet analysis and its application data mining[D]. university of electronic science and technology of china. (2006).
Google Scholar
[6]
Tobias Jahnke, Tudor Udrescu. Solving chemical master equations by adaptive wavelet compression. Journal of Computational Physics 229 (2010) 5724–5741.
DOI: 10.1016/j.jcp.2010.04.015
Google Scholar
[7]
Pan Guo-Feng, Yang Hui-Zhong, Kong Jun. Application of spectroscopy technique to water quality analysis based on wavelet data compression. Journal of infrared and millimeter waves. 29 (2010) 397-400.
DOI: 10.3724/sp.j.1010.2010.00397
Google Scholar
[8]
Dechevsky Lubomir T, Gundersen Joakim, Grip Niklas. Wavelet Compression, Data Fitting and Approximation Based on Adaptive Composition of Lorentz-Type Thresholding and Besov-Type Non-threshold Shrinkage. Large-scale scientific computing . 5910(2010).
DOI: 10.1007/978-3-642-12535-5_88
Google Scholar
[9]
Reich Nils. wavelet compression of anisotropic integrodifferential operators on sparse tensor product spaces. Esaim-mathematical modelling and numerical analysis-modelisation mathematique et analyse numerique. 44(2010)33-73.
DOI: 10.1051/m2an/2009039
Google Scholar
[10]
jackson,J.E. A User's guide to principal components. Technometrics. 35(1993)83-85.
Google Scholar
[11]
K. Le Mapihan , J. Vial, A. Jardy. Reversed-phase liquid chromatography column testingand classification: Physicochemical interpretation based on a wide set of stationary phases. JournalofChromatographyA. 1144(2007)183–196.
DOI: 10.1016/j.chroma.2007.01.034
Google Scholar
[12]
Zhengzheng Pan , Haiwei Gu , Nari Talaty, et al. Principal component analysis of urine metabolites detected by NMR and DESI–MS in patients with inborn errors of metabolism. Anal Bioanal Chem. 387 (2007) 539–549.
DOI: 10.1007/s00216-006-0546-7
Google Scholar
[13]
Dalin Yuan , Yizeng Liang , Lunzhao Yi , etal. Uncorrelated linear discriminant analysis (ULDA): A powerful tool for exploration of metabolomics data. Chemometrics and Intelligent Laboratory Systems. 93 (2008) 70–79.
DOI: 10.1016/j.chemolab.2008.04.005
Google Scholar
[14]
Chenfei Ma , Huahong Wang , Xin Lu , etal. Terpenoid metabolic profiling analysis of transgenic Artemisia annua L. by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Metabolomics. 5 (2009)497–506.
DOI: 10.1007/s11306-009-0170-6
Google Scholar
[15]
Ute Ro¨misch , Henry Ja¨ger, Xavier Capron , etal. Characterization and determination of the geographical origin of wines. Part III: multivariate discrimination and classification methods. Eur Food Res Technol . 230 (2009)31–45.
DOI: 10.1007/s00217-009-1141-x
Google Scholar
[16]
Xu Liang , Xi Zhang , Weixing Dai , etal. A combined HPLC-PDA and HPLC-MS method for quantitative and qualitative analysis of 10 major constituents in the traditional Chinese pharmaceuticals Zuo Gui Wan. Journal of Pharmaceutical and Biomedical Analysis. 49 (2009).
DOI: 10.1016/j.jpba.2009.02.004
Google Scholar
[17]
Paul Williams , Paul Geladi , Glen Fox, etal. Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis. Analytica Chimica Acta. 653 (2009) 121–130.
DOI: 10.1016/j.aca.2009.09.005
Google Scholar
[18]
Eriksson,L., Johansson,E., Kettaneh-wold,N., Trygg,J., Wikstrom,M., and Wold,S., Multi-and Megavariate data analysis, Part Ⅱ, Method Extensions and Advanced Applications, Chapter 23, Umetrics Academy, (2005).
DOI: 10.1002/cem.713
Google Scholar
[19]
Trygg,J., Prediction and spectral profile estimation in multivariate calibration, Journal of chemometrics. 18(2004)166-172.
DOI: 10.1002/cem.860
Google Scholar
[20]
Trygg,J., O2-PLS for Qulitative and Quantitative Analysis in Multivariate Calivration, Journal of chemometrics. 16(2002)283-293.
DOI: 10.1002/cem.724
Google Scholar