Mechanical and Transport Properties of Concrete at High Temperatures

Article Preview

Abstract:

When concrete structures are subjected to fire loading, temperature-dependent degradation of the material properties as well as spalling of near-surface concrete layers has a considerable effect on the load-carrying capacity and, hence, the safety of these structures. Spalling is caused by interacting thermo-hydro-chemo-mechanical processes with both mechanical and transport properties playing an important role. Within experimental research activities at the IMWS, these properties are subject of investigation, i.e., (i) the strain behavior of concrete under combined thermal and mechanical loading and (ii) the permeability increase of temperature-loaded concrete and cement paste.

You have full access to the following eBook

Info:

[1] D. P. Bentz. Fibers, percolation, and spalling of high-performance concrete. ACI Materials Journal, 97(3): 351-359, (2000).

DOI: 10.14359/9878

Google Scholar

[2] T. Z. Harmathy. Effect of moisture on the fire endurance of building elements. Technical Report STP 385, American Society of Testing and Materials, (1965).

Google Scholar

[3] P. Kalifa, G. Ch´en´e, and C. Gall´e. High temperature behaviour of HPC with polypropylene fibres: from spalling to microstructure. Cement and Concrete Research, 31: 1487-1499, (2001).

DOI: 10.1016/s0008-8846(01)00596-8

Google Scholar

[4] G. A. Khoury, B. N. Grainger, and P. J. E. Sullivan. Strain of concrete during first heating to 600◦C. Magazine of Concrete Research, 37(133): 195-215, 1985. 10.

DOI: 10.1680/macr.1985.37.133.195

Google Scholar

[5] W. Kusterle, W. Lindlbauer, G. Hampejs, A. Heel, P. -F. Donauer, M. Zeiml, W. Brunnsteiner, R. Dietze, W. Hermann, H. Viechtbauer, M. Schreiner, R. Vierthaler, H. Stadlober, H. Winter, J. Lemmerer, and E. Kammeringer. Brandbest¨andigkeit von Faser-, Stahl- und Spannbeton.

Google Scholar

[6] C. Meyer-Ottens. Zur Frage der Abplatzungen an Betonbauteilen aus Normalbeton bei Brandbeanspruchung.

Google Scholar

[7] ¨Osterreichisches Normungsinstitut. Beton - Teil 1: Festlegung, Herstellung, Verwendung und Konformit¨atsnachweis [Concrete - Part 1: Specification, production, use and verification of conformity], 2004. In German.

Google Scholar

[8] P. Paulini and F. Nasution. Air permeability of near surface concrete. In F. et al. Toutelemonde, editor, Proceedings of the 5th International Conference on Concrete Under Severe Conditions: Environment and Loading (CONSEC'07), pages 241-248, Paris, 2007. Laboratoire central des ponts et chaussees (LCPC).

Google Scholar

[9] L. T. Phan and N. J. Carino. Review of mechanical properties of HSC at elevated temperatures. Journal of Materials in Civil Engineering, 10(1): 58-64, (1998).

Google Scholar

[10] U. Schneider. Ein Beitrag zur Frage des Kriechens und der Relaxation von Beton unter hohen Temperaturen [Contribution to creep and relaxation of concrete under high temperatures]. Habilitation thesis, TU Braunschweig, Braunschweig, Germany, 1979. In German.

Google Scholar

[11] U. Schneider. Concrete at high temperature - a general review. Fire Safety Journal, 13: 55-68, (1988).

Google Scholar

[12] U. Schneider and J. Horvath. Abplatzverhalten an Tunnelinnenschalenbeton [Spalling of concrete for tunnel linings]. Beton- und Stahlbetonbau, 97(4): 185-190, 2002. In German.

DOI: 10.1002/best.200200860

Google Scholar

[13] S. Thelandersson. Modeling of combined thermal and mechanical action in concrete. Journal of Engineering Mechanics (ASCE), 113(6): 893-906, (1987).

DOI: 10.1061/(asce)0733-9399(1987)113:6(893)

Google Scholar

[14] M. Zeiml, R. Lackner, D. Leithner, and J. Eberhardsteiner. Identification of residual gastransport properties of concrete subjected to high temperatures. Cement and Concrete Research, 38(5): 699-716, 2008. 11.

DOI: 10.1016/j.cemconres.2008.01.005

Google Scholar