The Analysis of the Built-in Electric Field and the Migration of Carries in Thermal/Electric-Field Poled Fused Silica

Article Preview

Abstract:

The thermal/electric poling process of fused silica glass is analyzed based on the multi-carriers’ model. The carrier continuity equation is applied to calculate the variation of the carrier concentration with time. The border of positive charge and negative charge is analogous to a p-n junction. Calculation of the built-in electric field is based on the Poisson equation. The result shows that the second-order nonlinearity effect is mainly formed by the Na+ depletion in the poled fused silica glass. The non-linear coefficient is calculated, it is agree well with the literature values, which verifies the reliability of the theory. The study provided theoretical foundation for manufacture optical communication components.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

496-501

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. A. Myers, N. Mukherjee and S. R. J (1991) Brubeck, Large second-order nonlinearity in poled fused silica. Opt. Let 1(22): 1732-1734.

DOI: 10.1364/ol.16.001732

Google Scholar

[2] N. Mukherjee, R. A. Myers, and S. R. J (1994) Brubeck, Dynamics of second-harmonic generation in fused silica . Opt. Soc. Am, , B11: 665 2(8): 112-115.

Google Scholar

[3] T. G. Alley, S. R. J. Brubeck, R. A (1998) Myers, Space -charge dynamics in thermally poled fused silica. J Non-Crypt State 3(12): 165-176.

DOI: 10.1016/s0022-3093(98)00788-1

Google Scholar

[4] Yitao Ren,. Zhengquan Dai and Jian Wang (2012) Theoretical Analysis of the Depletion Layer's Distribution in Thermally-poled Silica . Journal of the Korean Physical Society 4(8): 241-245.

DOI: 10.3938/jkps.60.1224

Google Scholar

[5] Xueming Liu, Mingde Zhang, Xiao han Sun (2000) Model for thermal/electric-field poling of fused silica . ACTA Physical Sinica 5(3): 538-543.

Google Scholar

[6] M. Dussauze and V. Rodriguez, A (2010) Lipovskii and M Petron, How Does Thermal Poling Affect the Structure of Soda-lime Glass. J. Phys. Chem. C. 6(7): 12754-12759.

DOI: 10.1021/jp1033905

Google Scholar

[7] T. G. Alley, S. R. J (1998) Brubeck, Visualization of the nonlinear optical space-charge region of bulk thermally poled fused-silica glass . Opt. Letts 7(15): 1170-1172.

DOI: 10.1364/ol.23.001170

Google Scholar

[8] P. G . Kazan sky, A. R . Smith, P. S . J . Russell et al (1996) Thermally poled silica glass: Laser induced pressure pulse probe of charge distribution . Apple, Phys Letts 8(7): 269-273.

DOI: 10.1063/1.115659

Google Scholar

[9] P. G. Kazan sky, A. Kamala and P. St. J (1993) Russell, Erasure of thermally poled second-order nonlinearity in fuse silica by electron implantation . Opt. Letts 9(14): 1141-1143.

DOI: 10.1364/ol.18.001141

Google Scholar

[10] R. Kashyap, G. J. Veldhuis, D. C. Rogers and P. E McKee (1994) Phase-matched second-harmonic generation by periodic poling of fused silica . Appl. Phys. Letts 10(11): 1332-1334.

DOI: 10.1063/1.111925

Google Scholar

[11] L. C. Triques. C. M. B. Cord eirio. And V. Bales Trier (2000) Depletion region in thermally poled fused silica . Appl. Phys. Letts 11(18): 2496-2498.

DOI: 10.1063/1.126387

Google Scholar

[12] P. Xesus and L. Jesus (1996) Increasing resistivity effects in field-assisted ion exchange for planar optical waveguide . Optics Letters 12(21): 1363-1365.

DOI: 10.1364/ol.21.001363

Google Scholar

[13] Kolinsky, Y. Qui quempois and G. Marginally (2005) Modeling of the susceptibility time -evolution in thermally poled fused silica. Optics express 13(20): 8015-8024.

DOI: 10.1364/opex.13.008015

Google Scholar

[14] Yao Liu, Ruohe Yao (2005) The built-in electric field is analyzed by proliferation of p-n junction . Physic of Guangxi 14(1): 16-21.

Google Scholar

[15] Xueming Liu, Xiaoping Zhen, Yili Guo, et al (2002) Theoretical analysis For Fused Silica After.

Google Scholar

[16] Thermal/Electric-field poling . Science China (Series E) 15(5): 251-255.

Google Scholar

[17] D Purenr, A C Liu, M J F Dignity, et al (1998) Absolute measurement of the second-order nonlinearity profile in poled silica. Opt Letts 16(8): 588-591.

Google Scholar

[18] V Pruner, F Smoggier, G Conflate, et al (2000) Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation . Apple Phys 17(8): 4881-4883.

Google Scholar