Bell Waves and Kind Waves for a (1+1)-Dimensional Nonlinear Partial Differential Equation

Article Preview

Abstract:

With the help of the symbolic computation system Maple and the mapping approach and a linear variable separation approach, a new family of exact solutions of the (1+1)-dimensional Burgers system is derived. Based on the derived solitary wave solution, some novel bell wave and kind wave excitations are investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

831-834

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.L. Zheng and J.F. Zhang: General solution and fractal structures for the (2+1)-Dimensional Generalized Ablowitznm-Kaup-Newell-Segur system. Chin. Phys. Lett. (2002) 19(10): 1399-1402.

DOI: 10.1088/0256-307x/19/10/301

Google Scholar

[2] Z.Y. Ma and C.L. Zheng: Two classes of fractal structures for the (2+1)-dimensional dispersive long wave system. Chin. Phys. B (2006)15(01): 0045-0052.

Google Scholar

[3] C.L. Zheng and J.F. Zhang: Excit solutions and abundant coherent soliton structures of (2+1)-dimensions Ablowitznm-Kaup-Newell-Segur system. Commun Theor Phys. (2003) 39(1): 9-14.

Google Scholar

[4] C.L. Zheng and L.Q. Chen: A General Mapping Approach and New Travelling Wave Solutions to (2+1)-Dimensional Boussinesq Equation[J]. Commun Theor Phys. (2004)41(5): 671-674.

DOI: 10.1088/0253-6102/41/5/671

Google Scholar

[5] H.P. Zhu, C.L. Zheng and J.P. Fang: Fractal and chaotic patterns of Nozhnik-Novikov-Veselov system derived from a periodic wave solution. Phys. Lett. A (2006)355(12): 39-46.

DOI: 10.1016/j.physleta.2006.01.096

Google Scholar

[6] C.L. Zheng: Coherent soliton structures with chaotic and fractal behavious in a generalized (2+1)-dimensional korteweg de-vries system. Chinese Journal of Physics. (2002) 41(05): 442-453.

Google Scholar

[7] J.F. Zhang and C.L. Zheng: Abundant localized coherent structures of the (2+1)-dimensions gen-eralized Nozhnik-Novikov-Veselov system. Chinese Journal of Physics(2003)41(3): 242-254.

Google Scholar

[8] J.P. Fang, C.L. Zheng and Q. Liu: Nonpropagating soliton in (2+1)-dimensional dispersive long-water system[J]. Commun Theor Phys. (2005)43(02): 245-250.

DOI: 10.1088/0253-6102/43/2/012

Google Scholar

[9] J.P. Fang, C.L. Zheng, J.M. Zhu and Q.B. Ren: New family of excit solutions and chaotic solitons of generalized Breor-Kaup system in (2+1)-dimensions via an extended mapping approach. Commun Theor Phys(2005)44(2): 203-208.

DOI: 10.1088/6102/44/2/203

Google Scholar

[10] S.H. Ma, J.P. Fang and C.L. Zheng: Complex wave excitations and chaotic patterns for a generalized (2+1)-dimensional korteweg de-vries system. Chin. Phys B (2008) 17(08): 2767-2773.

DOI: 10.1088/1674-1056/17/8/004

Google Scholar

[11] S.H. Ma, X.H. Wu, J.P. Fang and C.L. Zheng: Chaotic Solitons for the (2+1)-Dimensional Modified Dispersive Water-Wave System. Z. Naturforsch(2006)61a: 249-252.

DOI: 10.1515/zna-2006-5-606

Google Scholar

[12] S.H. Ma, J.P. Fang and C.L. Zheng: New exact solutions for the (3+1)-Dimensional Jimbo-Miwa System. Chaos, Solitons and Fractals(2009)40: 1352-1355.

DOI: 10.1016/j.chaos.2007.09.012

Google Scholar

[13] S.H. Ma, J.P. Fang and Z.J. Lv: Folded solitary wave excitations for (2+1)-Dimensional Nozhnik-Novikov-Veselov system. Commun Theor Phys. (2009)51(3): 479-484.

DOI: 10.1088/0253-6102/51/3/20

Google Scholar