Properties of N-Doped ZnO Films by RF Magnetron Sputtering

Article Preview

Abstract:

Using the radio frequency reactive magnetron sputtering technique, ZnO:N thin films were fabricated on glass substrate by changing the Ar/N2 flow ratio from 9/1 to 9/4. The samples were characterizated on the film microstructure and optical properties by XRD, UV- visible spectrophotometer and Fourier transform infrared spectroscopy. The XRD results show that no significant peaks appeared at less N flow and the light transmission rate of UV-Vis has Small fluctuations between 320~780nm wavelength ; with increasing N flow, there was only (002) single peak in curves of XRD, transmittance of UV had a sharp decline below the 400nm wavelength; when argon-nitrogen flow ratio was increased to 9/4, it is show that there were two peaks near 34°of 2θ in curves of XRD but no significant change in UV transmittance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1946-1951

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Joseph M., Tabata H., Saeki H., et al. Physics B: Condensed Matter, 2001, 302-303: 140-148.

Google Scholar

[2] Minegishi Kazunori, Koiwai Yasushi, Kikuchi Yukinbu, et al. Jpn. J. Appl. Phys. Part 2 Letters, 1997, 36(11A): L1453-L1455.

DOI: 10.1143/jjap.36.l1453

Google Scholar

[3] S. Tuzemen, G. Xiong, J. Wilkinson, et al. Physica B, 2001, 308-310: 1197.

Google Scholar

[4] Gang Xiong, John Wilkinson, Brian Mischuck, et al. Appl. Phys. Lett., 2002, 80(7): 1195.

Google Scholar

[5] Gang Xiong, John Wilkinson, S. Tuzemen, et al. Proceeding of SPIE-the Internationa Society for Optical Engineering, 2002, 4644: 256-262.

Google Scholar

[6] Joseph M., Tabata H., Saek H., Saek H., et al. Physica B: Condensed Matter, 2001, 302 – 303: 140-148.

Google Scholar

[7] J.G. Lu, Y.Z. Zhang, Z.Z. Ye, et al. Appl. Phy. Lett, 2006, 88(22): 222114-222116.

Google Scholar

[8] Min-Suk Oh, Sang-Ho Kim, Tae-Yeon Seong. Appl. Phys. Lett, 2005, 87(12): 122103-122106.

Google Scholar

[9] F.X. Xiu,Z. Yang L.J. Mandalapu, et al. Appl. Phys. Lett, 2006, 88(5): 052106-052108.

Google Scholar

[10] Y.J. Zeng Z.Z. Ye,W.Z. Xu, et al. Materials Letters, 2007, 61: 41-44.

Google Scholar

[11] Y.J. Zeng Z.Z. Ye,W.Z. Xu, et al. Appl. phys. Lett, 2006, 88(26): 262103-262105.

Google Scholar

[12] P. Wang, Chen NuoFu, Z.G. Yin. Appl. Phys. Lett, 2006, 88(15): 152102-152104.

Google Scholar

[13] Manoj Kumar, Tae-Hwan Kim, Sang-Sub Kim, et al. Appl. Phys. Lett, 2006, 89 (11): 112103 – 112105.

Google Scholar

[14] Y.J. Zeng Z.Z. Ye,W.Z. Xu, et al. Appl. phys. Lett, 2006, 88(6): 062107-062109.

Google Scholar

[15] N.H. Nickel and M.A. Gluba, Journal of Electronic Materials, 2011, 40(4): 440-445.

Google Scholar

[16] Guillen C, Herrero J. Thin Solid Films, 2006, 515 (2): 640- 643.

Google Scholar

[17] Z. W, Chen. S, Y. Zhang, S. Tan, et al. Materials Research Bulletin. 2002, 37(5): 825-831.

Google Scholar

[18] Zhu Hua, Li CuiYun, Mo ChunLan, et al. Journal of Semiconductors, 2008, 29(3), 539-543.

Google Scholar

[19] Zhu Hua, Liu HuiWen , Gao Hao, Feng XiaoWei, et al . Advanced Materials Research . 2012 (415-417) : 1953 – (1958).

Google Scholar

[20] Zhu Hua, Liu HuiWen, Kuang HuiYun, et al. Journal of Synthetic Crystals. 2012, 41(1): 130-135.

Google Scholar