Substrate Temperature Effects on the Structural and Optical Properties of TiO2-Doped ZnO Films for Organic Photovoltaic Devices

Article Preview

Abstract:

TiO2-doped ZnO thin films with highly (002)-preferred orientation were grown on glass substrates by RF magnetron sputtering. The effect of substrate temperature on structure and optical properties of the films were investigated by X-ray diffractometer and spectrophotometer. The results show that the polycrystalline TiO2-doped ZnO films consist of the hexagonal crystal structures with c-axis as the preferred growth orientation normal to the substrate. The substrate temperature significantly affects the crystallite size and optical transmittance of the deposited films, but slightly influences the refractive index and optical bandgap of the deposited films. The TiO2-doped ZnO film grown at substrate temperature of 470 K possesses the maximum crystallite size, an average transmittance of 76.2 % in the visible light range, and an optical bandgap of 3.46 eV.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1964-1967

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.W. Tang: Appl. Phys. Lett. Vol. 48 (1986), p.183.

Google Scholar

[2] X. Li and D. Tang: J. S. -Cent. Univ. Natl. (Nat. Sci. Ed. ) Vol. 28 (2009), p.9.

Google Scholar

[3] A.J. Breeze, Z. Schlesinger, S.A. Carter and P.J. Brock: Phys. Rev. B Vol. 64 (2001), p.125205.

Google Scholar

[4] X. Li: J. S. -Cent. Univ. Natl. (Nat. Sci. Ed. ) Vol. 27 (2008), p.14.

Google Scholar

[5] J. Gu, Z. Zhong, X. He and S. Chen: J. S. -Cent. Univ. Natl. (Nat. Sci. Ed. ) Vol. 30 (2011), p.70.

Google Scholar

[6] M. Berggren and O. Inganäs: Science Vol. 267 (1995), p.1479.

Google Scholar

[7] X. Li and Y. Hu: J. S. -Cent. Univ. Natl. (Nat. Sci. Ed. ) Vol. 29 (2010), p.6.

Google Scholar

[8] J.H. Burroughes, D.D.C. Bradley and A.R. Brown: Nature Vol. 347 (1990), p.539.

Google Scholar

[9] S. Chen, S. Wei, X. He and F. Sun: J. S. -Cent. Univ. Natl. (Nat. Sci. Ed. ) Vol. 28 (2009), p.43.

Google Scholar

[10] P.P. Sahay and R.K. Nath: Sens. Actuators B Vol. 134 (2008), p.654.

Google Scholar

[11] H. Kim, J.S. Horwitz, W.H. Kim and Z.H. Kafafi: Appl. Phys. Lett. Vol. 83 (2003), p.3809.

Google Scholar

[12] K. Haga, M. Kamidaira, Y. Kashiwaba, T. Sekiguchi and H. Watanabe: J. Crystal Growth Vol. 214 (2000), p.77.

DOI: 10.1016/s0022-0248(00)00068-3

Google Scholar

[13] J. Mass, P. Bhattacharya and R.S. Katiyar: Mater. Sci. Eng. B Vol. 103 (2003), p.9.

Google Scholar

[14] F. Sun and S. Hui: J. S. -Cent. Univ. Natl. (Nat. Sci. Ed. ) Vol. 28 (2009), p.10.

Google Scholar

[15] T. Minami, H. Sato and S. Takata: Jpn. J. Appl. Phys. Vol. 31 (1992), p. L1106.

Google Scholar

[16] Z. Ye and J. Tang: Appl. Opt. Vol. 28 (1989), p.2817.

Google Scholar

[17] Q.B. Ma, Z. Z. Ye, H.P. He, J.R. Wang, L.P. Zhu and B.H. Zhao: Vacuum Vol. 82 (2008), p.9.

Google Scholar

[18] D. Chen, Q. Li and J. Huang: J. S. -Cent. Univ. Natl. (Nat. Sci. Ed. ) Vol. 29 (2010), p.14.

Google Scholar

[19] J. Zhou and Z.Y. Zhong: Cryst. Res. Technol. Vol. 47 (2012), p.944.

Google Scholar

[20] Z.Z. You, G.J. Hua, Y.C. Yong and H. Jin: Cryst. Res. Technol. Vol. 47 (2012), p.1039.

Google Scholar

[21] J. Gu, Z. Zhong, X. He and F. Sun: J. S. -Cent. Univ. Natl. (Nat. Sci. Ed. ) Vol. 28 (2009), p.30.

Google Scholar

[22] I. Chambouleyron, S.D. Ventura and J.M. Martínez: J. Appl. Phys. Vol. 92 (2002), p.3093.

Google Scholar

[23] Z. Zhong, T. Zhang and H. Wang: J. S. -Cent. Univ. Natl. (Nat. Sci. Ed. ) Vol. 31 (2012), p.66.

Google Scholar