The Squeeze Film Damping Effect on Dynamic Responses of Micro-Electromechanical Resonators

Article Preview

Abstract:

The air squeeze film damping effect on the dynamic responses of clamped micro- electromechanical resonators is investigated in this study. A dynamic model for a clamped micro- electromechanical resonator with the damping consideration is derived using Lagrange’s equation. The corresponding resonator eigen solutions are formulated and solved by employing the assumed-mode method. The effect of different parameters; i.e. the resonator size, ambient temperature and pressure on the squeeze film damping characteristics were simulated and investigated. The results indicate that the squeeze film damping effect may significantly affect the dynamic responses of micro-scale electromechanical resonator.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1961-1965

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. J. Sniegowski, H. Guckel and T. R. Christensen, IEEE Solid State Sensor and Actuator Workshop, (1990) June 9-12.

Google Scholar

[2] J. D. Zook, D. W. Burns, H. Guekel, J. J. Sniegowski, R. I. Englestad and Z. Feng, Tech. Digest, 6th Int. Conf. Solid-state Sensors and Actuators (Trans. '91), (1991) June 664-667,.

Google Scholar

[3] G. Stemme, J. Micromech. Microeng., 1, 113 (1991).

Google Scholar

[4] J. D. Zook and D. W. Burns, Sensors and Actuators A:Physical 35, 51 (1992).

Google Scholar

[5] H. A. C. Tilmans, R. Legtenberg, H. Schurer, D. J. Iinterma, M. Elwenspoek, and J. H. J. Fluitman, IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control 41, 4 (1994).

DOI: 10.1109/58.265813

Google Scholar

[6] R. Legtenberg, J. Gilbert, S. D. Senturia, and M. Elwenspoek, J. MEMS 6, 257 (1997).

Google Scholar

[7] S. Zurn, M. Hsieh, G. Smith, D. Markus, M. Zang, G. Hughes, Y. Nam, M. Arik and D. Polla, Smart Mater. Struct. 10, 252 (2001).

DOI: 10.1088/0964-1726/10/2/310

Google Scholar

[8] Z. Kádár, W. Kimdt, A. Bossche and J. Mollinger, The 8th international Conference on Solid-State Sensors and Actuators, and Eurosensors IX., (1995) June 29.

Google Scholar

[9] H. Hosaka, K. Itao, and S. Kuroda, Mems'94, Proc, IEEE workshop, (1994) 193.

Google Scholar

[10] H. Hosaka, K. Itao and S. Kuroda, Sensors and Actuators A:Physical 49, 87 (1995).

Google Scholar

[11] H. Hosaka and K. Itao, Trans. ASME J. Vibration & Acoustics 124, 26 (2002).

Google Scholar

[12] B. Li, H. Wu, C. Zhu, J. Liu, Sensors and Actuators A:Physical 77, 191 (1999).

Google Scholar

[13] E. M Abdel-Rahman, M. I Younis, and A. H Nayfeh, J. Micromech. Microeng. 12, 759 (2002).

Google Scholar

[14] M. Bao, H. Yang, H. Yin and Y. Sun, J. Micromech. Microeng. 12, 341 (2002).

Google Scholar

[15] C. S. Chen and W. J. Kuo, 2003, Sensors and Actuators A:Physical 107, 193 (2003).

Google Scholar

[16] S. Hutcherson and W. Ye, J. Micromech. Microeng. 14, 1726 (2004).

Google Scholar

[17] M.K. Kwak, Journal of Sound and Vibration 210, 581 (1998).

Google Scholar

[18] Cho Y. H., Pisano A. P. and Howe R. T., J. MEMS 3, 81 (1994).

Google Scholar

[19] Ye W., Wang X., Hemmert W., Freeman D. and White J., J. MEMS 12, 557 (2003).

Google Scholar

[20] Veijola T. and Turowski M., J. MEMS 10, 263 (2001).

Google Scholar

[21] Christian R. G., Vacuum 16, 175 (1966).

Google Scholar