Texture Evaluation of Sol-Gel Derived Mesoporous Bioactive Glass

Article Preview

Abstract:

Recent years mesoporous bioactive glasses (MBGs) have become important biomaterials because of their high surface area and the superior bioactivity. Various studies have reported that when MBGs implanted in a human body, hydroxyl apatite layers, constituting the main inorganic components of human bones, will form on the MBG surfaces to increase the bioactivity. Therefore, MBGs have been widely applied in the fields of tissue regeneration and drug delivery. The sol-gel process has replaced the conventional glasses process for MBG synthesis because of the advantages of low contamination, chemical flexibility and lower calcination temperature. In the sol-gel process, several types of surfactants were mixed with MBG precursor solutions to generate micelle structures. Afterwards, these micelles decompose to form porous structures after calcination. Although calcination is significant for contamination, crystalline and surface area in MBG, to the best of the authors’ knowledge, only few systematic studies related to calcination were reported. This study correlated the calcination parameters and the microstructure of MBGs. Microstructure evaluation was characterized by transmission electron microscopy and nitrogen adsorption/desorption. The experimental results show that the surface area and the pore size of MBGs decreased with the increasing of the calcination temperature, and decreased dramatically at 800°C due to the formation of crystalline phases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

230-234

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. L. Hench, R. J. Splinter, W. C. Allen and T. K. Greenlee: J. Biomed. Mater. Res. Vol. 5 (1971), p.117.

Google Scholar

[2] W. Xia and J. Chang: J. Control. Release Vol. 110 (2006), p.522.

Google Scholar

[3] W. Xia and J. Chang: J. Non-Cryst. Solids Vol. 354 (2008), p.1338.

Google Scholar

[4] C. J. Shih, H. T. Chen, L. F. Huang, P. S. Lu, H. F. Chang and I. L. Chang: Mater. Sci. Eng. C-Mater. Biol. Appl. Vol. 30 (2010), p.657.

Google Scholar

[5] B. Lei, X. F. Chen, Y. G. Wang, N. R. Zhao, G. H. Miao, Z. M. Li and C. Lin: Mater. Lett. Vol. 64 (2010), p.2293.

Google Scholar

[6] A. J. Salinas, S. Shruti, G. Malavasi, L. Menabue and M. Vallet-Regi: Acta Biomater. Vol. 7 (2011), p.3452.

Google Scholar

[7] R. Li, A. E. Clark and L. L. Hench: J. Appl. Biomater. Vol. 2 (1991), p.231.

Google Scholar

[8] M. Vallet-Regí: J. Chem. Soc. -Dalton Trans. Vol. 30 (2001), p.97.

Google Scholar

[9] W. Vogel, W. Höland, K. Naumann and J. Gummel: J. Non-Cryst. Solids Vol. 80 (1986), p.34.

Google Scholar

[10] W. Vogel and W. Höland: Z. Chem. Vol. 22 (1982), p.429.

Google Scholar

[11] L. L. Hench: Curr. Opin. Solid ST. M. Vol. 2 (1997), p.604.

Google Scholar

[12] X. X. Yan, H. X. Deng, X. H. Huang, G. Q. Lu, S. Z. Qiao, D. Y. Zhao and C. Z. Yu: J. Non-Cryst. Solids Vol. 351 (2005), p.3209.

Google Scholar

[13] E. M. Carlisle: Calcified Tissue Int. Vol. 33 (1981), p.27.

Google Scholar

[14] E. M. Carlisle: Science Vol. 167 (1970), p.279.

Google Scholar

[15] R. Jugdaohsingh, K. L. Tucker, N. Qiao, L. A. Cupples, D. P. Kiel and J. J. Powell: J. Bone Miner. Res. Vol. 19 (2004), p.297.

Google Scholar

[16] S. Maeno, Y. Niki, H. Matsumoto, H. Morioka, T. Yatabe, A. Funayama, Y. Toyama, T. Taguchi and J. Tanaka: Biomaterials Vol. 26 (2005), p.4847.

DOI: 10.1016/j.biomaterials.2005.01.006

Google Scholar

[17] P. J. Marie: Bone Vol. 46 (2010), p.571.

Google Scholar

[18] M. Julien, S. Khoshniat, A. Lacreusette, M. Gatius, A. Bozec, E. F. Wagner, Y. Wittrant, M. Masson, P. Weiss, L. Beck, D. Magne and J. Guicheux: J. Bone Miner. Res. Vol. 24 (2009), p.1856.

DOI: 10.1359/jbmr.090508

Google Scholar

[19] M. Yamaguchi and Y. H. Gao, Gen. Pharmacol. Vol. 30 (1998), p.423.

Google Scholar

[20] H. Zreiqat, C. R. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, C. Knabe and M. Shakibaei: J. Biomed. Mater. Res. Vol. 62 (2002), p.175.

DOI: 10.1002/jbm.10270

Google Scholar

[21] Y. Yamasaki, Y. Yoshida, M. Okazaki, A. Shimazu, T. Uchida, T. Kubo, Y. Akagawa, Y. Hamada, J. Takahashi and N. Matsuura: J. Biomed. Mater. Res. Vol. 62 (2002), p.99.

DOI: 10.1002/jbm.10220

Google Scholar

[22] L. L. Hench and J. M. Polak: Science Vol. 295 (2002), p.1014.

Google Scholar

[23] S. Brunauer, P. H. Emmett and E. Teller: J. Am. Chem. Soc. Vol. 60 (1938), p.309.

Google Scholar