Micro and Desktop Factories for Micro/Meso-Scale Manufacturing Applications and Future Visions

Article Preview

Abstract:

Micro and desktop factories are small-size production systems suitable for the manufacture of small products with micro and/or macro size features. The development originates in Japan, where small machines were developed in order to save resources when producing small products. In the late 1990’s, the research spread around the world, and since then multiple miniaturized production systems have been developed. However, the level of commercialization and industrial adoption is still relatively low and the breakthrough remains unseen. This paper discusses the potential application areas of micro- and desktop factory solutions. The research has been carried out as a mixed-method research combining extensive literature survey and 18 semi-structured interviews in Europe. The interviewees are both from academia and industry, including equipment and component providers, as well as users and potential users.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-12

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ashida, K., Nakano, S., Park, J., & Akedo, J., On-Demand MEMS Device Production System by Module-Based Microfactory,. International Journal of AutomationTechnology, 4(2), 2010. pp.110-116.

DOI: 10.20965/ijat.2010.p0110

Google Scholar

[2] Asyril, Rethink Micromanipulation, Available at: http: /www. asyril. ch/media/PDF/Asyril_Products_E. pdf, (2010).

Google Scholar

[3] Asyril, Newsletter May 2011. Available at: http: /www. asyril. ch/newsletter/detail. php?lang=EN&id=30 [Accessed December 10, 2011].

Google Scholar

[4] Ataka, T., The Experimental Microfactory System in Japanese National R&D project, (1999).

Google Scholar

[5] Barkley, S., Mobile parts hospitals resuscitate broken gear, Available at: http: /www. army. mil/article/21502/ mobile-parts-hospitals-resuscitate-broken-gear/ [Accessed July 22, 2011], (2009).

Google Scholar

[6] Biohit, Biohit RobolineTM - your automate, Available at: http: /www. biohit. com/resource/files/media/brochures/liquid-handling/all/roboline-brochure-490100en-screen. pdf, (2011).

Google Scholar

[7] Bär, M., Modulare Montagemaschine – Tischfabrik. In M. Bär, ed. µFEMOS - Mikro-Fertigungstechniken für hybride mikrooptische Sensoren, (2006).

Google Scholar

[8] Clévy, C., Hubert, A. and Chaillet, N., Flexible micro-assembly system equipped with an automated tool changer, Journal of Micro - Nano Mechatronics, Vol. 4, No. 1, pp.59-72, (2008).

DOI: 10.1007/s12213-008-0012-z

Google Scholar

[9] Codourey, A., Interview at Asyril, Villaz-St-Pierre, Switzerland, 22 September, 9: 00-11: 30, (2011).

Google Scholar

[10] CSEM, PocketDelta: Miniature robot for microassembly". 1 p. Available at: http: /www. csem. ch/docs/Show. aspx, id=577, (2007).

Google Scholar

[11] Dimension, BRING YOUR IDEAS TO LIFE WITH A uPRINT® PERSONAL 3D PRINTER, Available at: http: /www. dimensionprinting. com/pdfs/up-prodspecs/up-prodspecs. pdf, (2010).

Google Scholar

[12] Eichhorn, V., Fatikow, S., Dahmen, C., Edeler, C., Stolle, C. and Jasper, D., 2008. Automated Microfactory inside a Scanning Electron Microscope, IWMF, pp.207-212, (2008).

DOI: 10.1109/robot.2008.4543246

Google Scholar

[13] Gaugel, T. and Dobler, H., Advanced modular microproduction system (AMMS), In SPIE, 29-30 October 2001. Newton, USA, pp.278-285, (2001).

DOI: 10.1117/12.444135

Google Scholar

[14] Heikkila, R., Karjalainen, I., Uusitalo, J., Vuola, A. and Tuokko, R., Possibilities of a Microfactory in the Assembly of Small Parts and Products - First Results of the M4-project, ISAM, pp.166-171, (2007).

DOI: 10.1109/isam.2007.4288467

Google Scholar

[15] Heikkilä, R., Uusitalo, J., Heikkilä, R. and Tuokko, R., A Microfactory Concept for Laser-Assisted Manufacturing of Personalized Implants, IWMF, pp.77-80, (2008).

Google Scholar

[16] Heikkilä, R., Järvenpää, E. and Tuokko, R., Advances in the TUT Microfactory Concept Development,. Int. J. of Automation Technology, Vol. 4, No. 2, 2010, pp.117-126.

DOI: 10.20965/ijat.2010.p0117

Google Scholar

[17] Heino, H., Interview at Bioretec, Tampere, Finland, 16 August, 09: 00-10: 15, (2011).

Google Scholar

[18] Hériban, D., Interview at Percibio Robotics, Bensançon, France, 23 September, 9: 00-10: 30, (2011).

Google Scholar

[19] Hirvonen, V., Interview at Master Automation Group, Vantaa, Finland, 26 August, 10: 00-11: 30, (2011).

Google Scholar

[20] Hofmann, A., Hummel, B., Firat, O., Bretthauer, G., Bär, M. and Meyer, M., microFLEX - A New Concept to Address the Needs for Adaptable Meso and Micro Assembly Lines, ISAM, 5 p., (2011).

DOI: 10.1109/isam.2011.5942297

Google Scholar

[21] Härkönen, K., Interview at Biohit, Helsinki, Finland, 25 August, 13: 00-14: 30, (2011).

Google Scholar

[22] Iijima, D., Ito, S., Hayashi, A., Aoyama, H. and Yamanaka, M., Micro Turning System: A Super Small CNC Precision Lathe for Microfactories, 3rd IWMF, pp.37-40, (2002).

Google Scholar

[23] JOT Automation, Desktop Screw Inserting Cell - Datasheet, 2 p. Available at: http: /www. jotautomation. com/media/datasheets/final-assembly/j505-62_datasheet_1_0_0_screen. pdf, (2010).

Google Scholar

[24] JOT Automation, JOT Automation Lean Solutions – Datasheet, 2 p. Available at: http: /www. jotautomation. com/media/datasheets/final-assembly/a4_and_a3_datasheet_1_2_0_print. pdf, (2011).

Google Scholar

[25] Järvenpää, E., Heikkilä, R. & Tuokko, R., Microfactory Concept for Highly Flexible Volume Assembly of Watch Mechanisms, IWMF 2010, p.6.

Google Scholar

[26] Kawahara, N., Suto, T., Hirano, T., Ishikawa, Y., Kitahara, T., Ooyama, N., Ataka, T., Microfactories; new applications of micromachine technology to the manufacture of small products, Microsystem Technologies, 3(2), 1997, pp.37-41.

DOI: 10.1007/s005420050052

Google Scholar

[27] King, B. and Jatoi, I., The mobile Army surgical hospital (MASH): a military and surgical legacy, Journal of the National Medical Association, Vol. 97, No. 5, 2005, pp.648-656.

Google Scholar

[28] Kitahara, T., Ashida, K., Tanaka, M., Ishikawa, Y., Oyama, N., and Nakazawa, Y., Microfactory and Microlathe, International Workshop on Microfactories, p.1–8., (1998).

Google Scholar

[29] Kobel, P. & Clavel, R., Circular concept of a miniaturized assembly line with an integrated clean room, IWMF 2010. pp.25-29.

Google Scholar

[30] Kobel, P., Interview at EPFL/LSRO, Lausanne, Switzerland, 21 September, 10: 00-12: 00, (2011).

Google Scholar

[31] Koelemeijer Chollet, S., Benmayor, L., Uehlinger, J. -M. and Jacot, J. Cost effective micro-system assembly automation, In 7th International Conference on Emerging Technologies and Factory Automation, pp.359-366, (1999).

DOI: 10.1109/etfa.1999.815377

Google Scholar

[32] Koelemeijer Chollet, S., Bourgeois, F. and Jacot, J., Economical justification of flexible microassembly cells, International Symposium on Assembly and Task Planning, (2003).

DOI: 10.1109/isatp.2003.1217186

Google Scholar

[33] Koelemeijer Chollet, S., Bourgeois, F., Wulliens, C. and Jacot, J., Cost modelling of microassembly, 2nd International Workshop on Microfactories, 6 p., (2003).

Google Scholar

[34] Kunt, E.D., Naskali, A. T., Cakir, K. and Sabanovic, A. A Versatile and Reconfigurable Microassembly Workstation, 6th IWMF 2008, pp.37-41, (2008).

Google Scholar

[35] Kurita, T., Watanabe, S. and Hattori, M., Development of hybrid micro machine tool, 2nd International Symposium on Environmentally Conscious Design and Inverse Manufacturing, pp.797-802, (2001).

DOI: 10.1109/ecodim.2001.992470

Google Scholar

[36] Lin, W., Ohmori, H., Uehara, Y., Asami, M. and Ohmori, M., Development and Characteristic on the Desk-top 4-Axes Machine "TRIDER-X" for Micro-fabrication,. 4th IWMF, pp.74-79, (2004).

Google Scholar

[37] Luotonen, J., Interview at Nokia. Salo, Finland, 2 September, 10: 15-12: 00, (2011).

Google Scholar

[38] Madou, M. & Irvine, U.C., WTEC Micromanufacturing - Applications., PDF Presentation Slides; Department. of Mechanical and Aerospace Engineering, Updated 22. 04. 2005, Available at: http: /www. wtec. org/micromfg/workshop/ proceedings/06-Applications-Madou_files/frame. htm [Accessed June 16, 2011].

Google Scholar

[39] MAG, MAG Lean: Solutions for industry, Available at: http: /www. mag. fi/products_and_services/electronics/mag_lean [Accessed December 10, 2011], 2010. JOT Intelligent Desktop Automation, JOT IDeA, http: /www. jotautomation. com [Accessed October 10, 2012].

Google Scholar

[40] MAG, Company Overview, Available at: http: /www. mag. fi/about_us/ company_overview/ [Accessed December 12, 2011].

Google Scholar

[41] Medical Murray, 2011. Nanomolding. Available at: http: /www. medicalmurray. com/ Development/Nanomolding. aspx [Accessed December 10, 2011].

Google Scholar

[42] Michaeli, W., Opfermann, D. & Kamps, T., Advances in micro assembly injection moulding for use in medical systems, The International Journal of Advanced Manufacturing Technology, 33(1-2), 2007, pp.206-211.

DOI: 10.1007/s00170-007-0951-x

Google Scholar

[43] Nurmi, A., Business models and applications for micro and desktop production systems, MSc thesis, 120 p., (2012).

Google Scholar

[44] Objet, Objet24 Personal 3D Printer, 2p. Available at: http: /www. objet. com/Portals/0/docs2/Objet24_A4_New_IL_low. pdf, (2010).

Google Scholar

[45] Okazaki, Y., Mori, T. and Morita, N., Desk-top NC milling machine with 200 krpm spindle, In ASPE 16th Annual Meeting, pp.192-195, (2001).

Google Scholar

[46] Okazaki, Y., Mishima, N. and Ashida, K., Microfactory - Concept, History, and Developments, J. of MSE, Vol. 126, No. 4, pp.837-844, (2004).

DOI: 10.1115/1.1823491

Google Scholar

[47] Okazaki, Y., Development of a desk-top milling machine with a 300 krpm spindle and a linear motor stage, 4th IWMF 2004, pp.29-33, (2004).

Google Scholar

[48] Okazaki, Y., Microfactories – A New Methodology for Sustainable Manufacturing, International Journal of AutomationTechnology, 4(2), 2010, pp.82-87.

Google Scholar

[49] Park, J. -K., Lee, N. -K., Lee, D.W. and Song, J. -Y., Development of Microfactory Systems for the Next Generation - 3rd Year Report, 3th International Workshop on Microfactory Technology, pp.5-12., (2007).

Google Scholar

[50] Rizzi, A.A., Gowdy, J. and Hollis, R.L., Distributed coordination in modular precision assembly systems, The International Journal of Robotics Research, Vpl. 20, No. 10, pp.819-838, (2001).

DOI: 10.1177/02783640122068128

Google Scholar

[51] Rolanda DG Co., iM-01 Brochure, Available at: http: /www. rolanddg. com/PDF/im-01. pdf, (2011).

Google Scholar

[52] Siltala, N., Prusi, T., Vuola, A., Heikkilä, R. and Tuokko, R. Modular Microfactory System for Gas Sensor Assembly,. ISAM (2011).

DOI: 10.1109/isam.2011.5942333

Google Scholar

[53] Tirkkonen, P., Interview at Verkkokauppa. com, Helsinki, Finland, 6 September, 13: 00-14: 30, (2011).

Google Scholar

[54] Uusitalo, J.J., Viinikainen, H. & Heikkilä, R., Mini assembly cell for the assembly of mini-sized planetary gearheads,. Assembly Automation, 24(1), 2004, pp.94-101.

DOI: 10.1108/01445150410698985

Google Scholar

[55] Verettas, I., Clavel, R. and Codourey, A., Pocket Factory": Concept of miniaturized modular cleanrooms, Mechanical Engineering, (2005).

Google Scholar

[56] vhf camfacture, Impression Line, Available at: http: /www. vhf. eu/en/Machines/BasicSystems/ImpressionLine [Accessed December 10, 2011], (2010).

Google Scholar

[57] Zott, A., Interview at Nokia, Ulm, Germany, 19 September, 10: 00-12: 00, (2011).

Google Scholar

[58] 2BOT physical Modeling Technologies, Classroom ModelMakerTM .. enhancing cognition through subtraction, Available at: http: /www. 2bot. com/images/ stories/DOWNLOADS/85-0601-001RA_BRO_EDU_CUT_Sheet. pdf, (2010).

Google Scholar