The Effects of Elimination of Fungi on Microbial Population and Fiber Degradation in Sheep Rumen

Article Preview

Abstract:

The role of microbes in fiber degradation and the relations among the microbes in sheep rumen were explored by in vivo elimination of fungi. The experiment was conducted on 6 Mongolian sheep with fistulae approximately 1.5 years old (35kg). The sheep were randomly divided into two groups, treatment group (n=3) and control group (n=3). The rumen fluids were collected from the rumen though fistulae. The results showed that the total numbers of bacteria, cellulolytic bacteria and protozoa in the rumen were significantly increased (P<0.05) after fungus elimination. Among the three main cellulolytic bacteria, the number of R.flavefaciens and F.succinogenes increased significant (P<0.05). Elimination of fungi significantly reduced the degradation of DM, NDF and ADF, and the activity of CMCase in sheep rumen (P<0.05). The number of total rumen bacteria and fungi detected by real-time PCR were about 10 times and 1,000 times higher than that of the traditional anaerobic culture method, suggesting that real-time PCR is superior to the traditional roller tube culture method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

224-231

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Itabashi H, Matsul H: Recent advances in microbial ecology of protozoa and fungi in the rumen of herbivores, (2008), 110-124.

Google Scholar

[2] Maillet CB, Ribot Y, Forano E: Applied and Environmental Microbiology Vol. 70 (2004), pp.2172-2179.

Google Scholar

[3] Weimer PJ, Waghorn GC, Odt CL, et al.: J. Dairy. Sci. Vol. 82 (1999), pp.122-134.

Google Scholar

[4] Coleman GS: J. Agric. Sci. Vol. 104(1985), pp.349-360.

Google Scholar

[5] Jouany JP, Martin C: Rumen microbes and digestive physiology in ruminants, (1997), pp.11-24.

Google Scholar

[6] Takenaka A, Silva CGD, Kudo H, et al.: J. Gen. Appl. Microbiol Vol. 45 (1999), pp.57-61.

Google Scholar

[7] Krause DO, Denman SE, Mackie RI, et al.: FEMS Microbiology Reviews Vol. 27 (2003), pp.663-693.

Google Scholar

[8] Joblin KN, Matsui H, Naylor GE, et al.: Current microbiology Vol. 45 (2002), pp.46-53.

Google Scholar

[9] Joblin KN, Naylor G. E:Proc. Nutr. Soc Vol. 3 (1994), p.171.

Google Scholar

[10] Orpin CG, Jobin KN: The rumen microbial ecosystem. Chapman and Hall, London, United Kingdom, (1997), 140-195.

Google Scholar

[11] XX Huo, XZ Hou, DB Li et al.: Chinese Journal of Animal and Veterinary Vol. 37 (2006), pp.447-451.

Google Scholar

[12] Hungate RE: Methods Microbiol, Vol. 3B (1969), pp.117-132.

Google Scholar

[13] Joblin KN: Applied and Environmental Microbiology Vol. 42 (1981), pp.1119-1122.

Google Scholar

[14] Dehority BA: Applied and Environmental Microbiology Vol. 48 (1984), pp.182-185.

Google Scholar

[15] Shinkai T, Kobayshi Y: Applied and Environmental Microbiology Vol. 73 (2007), pp.1646-1652.

Google Scholar

[16] Denman SE, Mcsweeney CS: FEMS Microbiol Ecol. Vol. 58 (2006), pp.572-582.

Google Scholar

[17] Koike S, Kobayashi Y: FEMS Microbiology Letters Vol. 204 (2001), pp.361-366.

Google Scholar

[18] Joe Sambrook, Russell DW. Guideline for molecular cloning experiments. Translated by Huang et al. Third Edition. Beijing: Science Press, (2002).

Google Scholar

[19] Lee ChangSoo, Kim Jaai, Shin Seung Gu, et al.: Journal of Biotechnology Vol. 123 (2006), pp.273-280.

Google Scholar

[20] Qrskov ER, Mcdonald I: J. Agric. Sci. (Camb) Vol. 92 (1979), pp.499-503.

Google Scholar

[21] Paul SS, Kamra DN, Sastry VRB, et al.: Animal feed science and technology Vol. 115 (2004), pp.143-157.

Google Scholar

[22] Gordon GLR, Phillips MW: Letters in Applied Microbiology Vol. 17 (1993), pp.220-223.

Google Scholar

[23] SY Mao, QJ Wang, W Yao et al.: Journal of Nanjing Agricultural University Vol. 25 (2002), pp.61-65.

Google Scholar

[24] L DB i, XZ Hou: Chinese Journal of Animal Nutrition Vol. 17 (2005), pp.43-48.

Google Scholar

[25] SY Mao, J Chen, W Yao et al.: Journal of Huazhong Agricultural University Vol. 24 (2005), pp.610-613.

Google Scholar

[26] XX Huo. The role of anaerobic fungi in fiber degradation and their relations with bacteria and protozoa. Inner Mongolia Agricultural University, (2003).

Google Scholar

[27] Joblin KN, Naylor GE: Ann Zootech(pairs) Vol. 45 (1996), p.289.

Google Scholar

[28] Dehority BA, Tirabasso PA: Applied and Environmental Microbiology Vol. 66 (2000), pp.2921-2927.

Google Scholar

[29] Roger V, Bernalier AE, Grenet, et al.: Anim. Feed Sci. Technol. Vol. 19 (1993), pp.25-31.

Google Scholar

[30] Irivine HL, Stewart CS: Lett. Appl. Microbiol. Vol. 12 (1991), pp.62-64.

Google Scholar

[31] Bernalier AG, Fonty F, Bonnemoy: Curr. Microbiol. Vol. 25 (1992), pp.143-148.

Google Scholar

[32] Michalet-doreau B, Fernandez I, Fonty G: American society of animal science Vol. 80 (2002), pp.790-796.

Google Scholar

[33] Ozutsumi Y, Tajima K, Takenaka A, et al.: Current microbiology Vol. 52 (2006), pp.158-162.

Google Scholar

[34] Paul SS, Kamra DN, Sastry VRB, et al.: Reprod. Nutr. Dev. Vol: 44 (2004), pp.313-319.

Google Scholar

[35] Lee SS, Ha JK, Cheng KJ: Feed Sci. Technol. Vol. 88 (2000), pp.201-217.

Google Scholar

[36] Lee SS, Choi CK, Ahn BH, et al.: Animal feed science and technology, Vol. 115 (2004), pp.215-226.

Google Scholar

[37] Akin DE, Lyon CE, et al.: Applied and Environmental Microbiology Vol. 55 (1989), pp.611-616.

Google Scholar

[38] Williams AG, Orpn CG: Canadian Journal of Microbiology Vol. 33 (1987), pp.418-426.

Google Scholar

[39] Gordon GLR, Phillips MW, Rintoul AJ, et al.: J. Anim. Sci. Vol. 13 (2000), p.13.

Google Scholar