[1]
Granier, A., Ceschia, E., Damesin, C., Dufrene, E., Epron, D., Gross, P., Lebaube, S., Le Dantec, V., Le Goff, N., Lemoine, D., 2000. The carbon balance of a young Beech forest. Functional Ecology 14, 312–325.
DOI: 10.1046/j.1365-2435.2000.00434.x
Google Scholar
[2]
IPCC, 1996. Climate Change 1995. The Science of Climate Change. Cambridge University Press, Cambridge, 572.
Google Scholar
[3]
Buchmann, N., 2000. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology & Biochemistry 32, 1625–1635.
DOI: 10.1016/s0038-0717(00)00077-8
Google Scholar
[4]
Schlesinger, W.H., Andrews, J.A., 2000. Soil respiration and the global carbon cycle. Biogeochemistry 48, 7–20.
Google Scholar
[5]
Hibbard, K.A., Law, B.E., Reichstein, M., Sulzman, J., 2005. An analysis of soil respiration across northern hemisphere temperate ecosystems. Biogeochemistry 73, 29-70.
DOI: 10.1007/s10533-004-2946-0
Google Scholar
[6]
Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165-173.
DOI: 10.1038/nature04514
Google Scholar
[7]
Grace, J., Rayment, M., 1999. Respiration in the balance. Nature 404, 819–820.
Google Scholar
[8]
Sa'nchez, M.L., Ozores, M.I., Lo'pez, M.J., Colle, R., De Torre, B., Garc a,M.A., Pe, rez, I., 2003. Soil CO2 fluxes beneath barley on the central Spanish plateau. Agricultural and Forest Meteorology 118, 85–95.
DOI: 10.1016/s0168-1923(03)00066-2
Google Scholar
[9]
Rodeghiero and Cescatti, 2005 Rodeghiero, M., Cescatti, A., 2005. Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps. Global Change Biology 11, 1024–1041.
DOI: 10.1111/j.1365-2486.2005.00963.x
Google Scholar
[10]
Goulden, M.L., Munger, J.W., Fan, S.M., Daube, B.C., Wofsy, S.C., 1996. Exchange of carbon dioxide by a deciduous forest: response of interannual climate variability. Science 271, 1576–1578.
DOI: 10.1126/science.271.5255.1576
Google Scholar
[11]
Raich, J.W., Tufekcioglu, A., 2000. Vegetation and soil respiration: correlations and controls. Biogeochemistry 48, 71-90.
Google Scholar
[12]
Longdoz, B., Yernaux, M., Aubinet, M., 2000. Soil CO2 efflux measurements in a mixed forest: impact of chamber distances, spatial variability and seasonal evolution. Global Change Biology 6, 907–917.
DOI: 10.1046/j.1365-2486.2000.00369.x
Google Scholar
[13]
Lindroth, A., Grelle, A., Moren, A., 1998. Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Global Change Biology 4, 443–450.
DOI: 10.1046/j.1365-2486.1998.00165.x
Google Scholar
[14]
Tufekcioglu, A., Raich, J.W., Isenhart, T.M., Schultz, R.C., 2001. Soil respiration within riparian buffers and adjacent crop fields. Plant and Soil 229, 117–124.
DOI: 10.1023/a:1004818422908
Google Scholar
[15]
Lee, X.H., Wu, H.J., Sigler, J., Oishi, C., Siccama, T., 2004. Rapid and transient response of soil respiration to rain. Global Change Biology 10, 1017–1026.
DOI: 10.1111/j.1529-8817.2003.00787.x
Google Scholar
[16]
Janssens, I.A., Pilegaard, K., 2003. Large seasonal changes in Q10 of soil respiration in a beech forest. Global Change Biology, 911-918.
DOI: 10.1046/j.1365-2486.2003.00636.x
Google Scholar
[17]
Hanson, P.J., Edwards, N.T., Garten, C.T., Andrews, J.A., 2000. Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48, 115–146.
Google Scholar
[18]
Karajick, K., 2001. Long-term data show lingering effecters from acid rain. Science. 292: 195-196.
DOI: 10.1126/science.292.5515.195
Google Scholar
[19]
Seip, H. M., Aagaard, P. and Angell, V., 1999. Acidification in China: Assessment based on studies at forested sites from Chongqing to Guangzhou. Ambio (in Chinese)28(6), 524-529.
Google Scholar
[20]
Streets, D. G., Carmichael, G. R., Amann, M. and Arndt, R. L., 1999. Energy consumption and acid deposition in Northeast Asia. Ambio (in Chinese) 28, 135-143.
Google Scholar
[21]
Rodhe, H., Galloway, J. and Zhao, D., 1992. Acidification in Southeast Asia-Prospects for the coming decades. Ambio (in Chinese) 21, 148-150.
Google Scholar
[22]
Kato, N. 1996. Analysis of structure of energy consumption and dynamics of emission of atmospheric species related to the global environment change (SO2, NOX, and CO2) in Asia. Atmos. Environ30, 757-785.
DOI: 10.1016/1352-2310(95)00110-7
Google Scholar
[23]
Hettelingh, J. P., Sverdrup, H. and Zhao, D., 1995. Deriving critical loads for Asia. Water Air Soil Poll 85, 2 565-2 570.
DOI: 10.1007/bf01186220
Google Scholar
[24]
Charlson, R.J., Rodhe, H., 1982. Factors controlling the acidity of natural rainwater. Nature 295, 683-695.
DOI: 10.1038/295683a0
Google Scholar
[25]
Kita, I., Sato, T., Kase, Y., Mitropoulos, P., 2004. Neutral rains at Athens, Greece: a natural safeguard against acidification of rains. Sci. Total Environ. 327, 285–294.
DOI: 10.1016/j.scitotenv.2004.01.012
Google Scholar
[26]
Ding, G.A., Xu, X.B., Fang, X.M., 1997. Acid rain in China current status and trend Chinese Science Bulletin 42 (2), 169-173 (in Chinese).
Google Scholar
[27]
Wang, W.X., Ding, G.A., 1997. The spatial and temporal distribution of precipitation acidity and ions concentration of precipitation in China, Res. Environ. Sci. 10, 1–6. ( in Chinese with an English abstract).
Google Scholar
[28]
Fan, H.B., Wang, Y.H., 2000. Effects of simulated acid rain on germination, foliar damage, chlorophyll contents and seedling growth of five hardwood species growing in China. Forest Ecology and Management 126, 321-329.
DOI: 10.1016/s0378-1127(99)00103-6
Google Scholar
[29]
Wang, D.Z., Jiang, X., Rao, W., He, J.Z., 2009. Kinetics of soil cadmium desorption under simulated acid rain. Ecological Complexity 6, 432-437.
DOI: 10.1016/j.ecocom.2009.03.010
Google Scholar
[30]
Zhang, J.E., Quyang, Y., Ling, D.J., 2007. Impacts of simulated acid rain on cation leaching from the Latosol in south China. Chemosphere 67, 2131-2137.
DOI: 10.1016/j.chemosphere.2006.12.095
Google Scholar
[31]
Kuzyakov, Y., 2006. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biology and Biochemistry 38, 425-448.
DOI: 10.1016/j.soilbio.2005.08.020
Google Scholar
[32]
Kuzyakov, Y., Larionova, A.A., 2005. Root and rhizomicrobial respiration: a review of approaches to estimate respiration by autotrophic and heterotrophic organisms in soil. Journal of Plant Nutrition and Soil Science 168, 503-520.
DOI: 10.1002/jpln.200421703
Google Scholar
[33]
Cheng, W., Fu, S., Susfalk, R.B., Mitchell, R.J., 2005. Measuring tree root respiration using 13C natural abundance: rooting medium matters. New Phytologist 167, 297–307.
DOI: 10.1111/j.1469-8137.2005.01427.x
Google Scholar
[34]
Cropper, W.P., Gholz, H.L., 1991. In situ needle and fine root respiration in mature slash pine (Pinus elliotti) trees. Canadian Journal of Forest Research 21, 1589–1595.
DOI: 10.1139/x91-221
Google Scholar
[35]
Vanhala, P., 2002. Seasonal variation in the soil respiration rate in coniferous forest soils. Soil Biology and Biochemistry 34, 1375-1379.
DOI: 10.1016/s0038-0717(02)00061-5
Google Scholar
[36]
Hutchinson TC, Watmough SA, Sager EPS, etal. 1999. The impact of simulated acid rain and fertillizer application on amature sugarmaple (Acer SaccharamMarsh)forest in central Ontario. Canada Water, Air and Soil Pollution 109(1-4), 17-39.
Google Scholar