[1]
A.M. Lyapunov, A general task about the stability of motion (in Russian), PhD Thesis, University of Kazany, 1892.
Google Scholar
[2]
A.M. Lyapunov, Stability of Motion, Academic Press, New-York and London, (1966).
Google Scholar
[3]
Jean-Jacques E. Slotine, W. Li, Applied Nonlinear Control, Prentice Hall International, Inc., Englewood Cliffs, New Jersey, (1991).
Google Scholar
[4]
R. Isermann, K.H. Lachmann, and D. Matko, Adaptive Control Systems, New York DC, Prentice-Hall, USA, (1992).
Google Scholar
[5]
C.C. Nguyen, Sami S. Antrazi, Zhen-Lei Zhou, Charles E. Campbell Jr., Adaptive control of a stewart platform-based manipulator, Journal of Robotic Systems, 10(5) (1993), 657-687.
DOI: 10.1002/rob.4620100507
Google Scholar
[6]
R. Kamnik, D. Matko and T. Bajd, Application of model reference adaptive control to industrial robot impedance control, Journal of Intelligent and Robotic Systems, 22 (1998) 153-163.
DOI: 10.1023/a:1007932701318
Google Scholar
[7]
J. Somló, B. Lantos, P.T. Cát, Advanced Robot Control, Akadémiai Kiadó, Budapest, Hungary (2002).
Google Scholar
[8]
K. Hosseini-Suny, H. Momeni, and F. Janabi-Sharifi, Model reference adaptive control design for a teleoperation system with output prediction, J Intell Robot Syst, DOI 10. 1007/s10846-010-9400-4, (2010) 1-21.
DOI: 10.1007/s10846-010-9400-4
Google Scholar
[9]
J.K. Tar, J.F. Bitó, L. Nádai, J.A. Tenreiro Machado, Robust fixed point transformations in adaptive control using local basin of attraction, Acta Polytechnica Hungarica, 6(1) (2009) 21-37.
Google Scholar
[10]
J.K. Tar, I.J. Rudas, Sz. Menthy, Iterative adaptive control of a strongly underactuated mechanical system with limited possibilities for state observation, Proc. of the 16th IEEE International Conference on Intelligent Engineering Systems 2012 (INES 2012), Lisbon, Portugal, 2012. 06. 13-2012. 06. 15., 241-246.
DOI: 10.1109/ines.2012.6249838
Google Scholar
[11]
J.K. Tar, L. Nádai, I.J. Rudas, T.A. Várkonyi, Adaptive emission control of freeway traffic using quasi-stationary solutions of an approximate hydrodynamic model, Journal of Applied Nonlinear Dynamics, 1(1) (2012) 29-50.
DOI: 10.5890/jand.2011.12.002
Google Scholar
[12]
J.K. Tar, J.F. Bitó, I.J. Rudas, Replacement of Lyapunov's direct method in model reference adaptive control with robust fixed point transformations, Proc. of the 14th IEEE International Conference on Intelligent Engineering Systems 2010, Las Palmas of Gran Canaria, Spain, May 5-7, (2010).
DOI: 10.1109/ines.2010.5483841
Google Scholar
[13]
J.K. Tar, J.F. Bitó, I.J. Rudas, K. Eredics, Avoiding Lyapunov functions in MRAC control: a comparative simulation study for controlling an EmA, Óbuda University e-Bulletin 1(1) (2010).
Google Scholar
[14]
J.K. Tar, K. Eredics, Simulation studies on various tuning methods for convergence stabilization in a novel approach of model reference adaptive control based on robust fixed point transformations, Acta Technica Jaurinensis, 4(1) (2011) 37-57.
Google Scholar
[15]
Z. Prime, B. Cazzolato, C. Doolan, and T. Strganac, Linear-parameter-varying control of an improved three-degree-of-freedom aeroelastic model, Journal of Guidance, Control, and Dynamics, 33 (2010).
DOI: 10.2514/1.45657
Google Scholar
[16]
V. Mukhopadhyay, Historical perspective on analysis and control of aeroelastic responses, Journal of Guidance, Control, and Dynamics, 26 (2003) 673-684. [Online available: http: /doi. aiaa. org/10. 2514/2. 5108].
DOI: 10.2514/2.5108
Google Scholar
[17]
M. Karpel, Design for active flutter suppression and gust alleviation using State-Space aeroelastic modeling, Journal of Aircraft, 19 (1982) 221-227. [Online available: http: /doi. aiaa. org/10. 2514/3. 57379].
DOI: 10.2514/3.57379
Google Scholar
[18]
H. Ozbay and G. R. Bachmann, H(2)/H(infinity) controller design for a two-dimensional thin airfoil flutter suppression, Journal of Guidance, Control, and Dynamics, 17 (1994) 722-728. [Online available: http: /doi. aiaa. org/10. 2514/3. 21260].
DOI: 10.2514/3.21260
Google Scholar
[19]
J. M. Barker, G. J. Balas, and P. A. Blue, Gain-Scheduled linear fractional control for active flutter suppression, Journal of Guidance, Control, and Dynamics, 22 (1999) 507-512. [Online available: http: /doi. aiaa. org/10. 2514/2. 4418].
DOI: 10.2514/2.4418
Google Scholar
[20]
J. M. Barker and G. J. Balas, Comparing linear parameter-varying gain-scheduled control techniques for active flutter suppression, Journal of Guidance, Control, and Dynamics, 23(5) (2000) 948-955.
DOI: 10.2514/2.4637
Google Scholar
[21]
P. Baranyi, Tensor product model-based control of two-dimensional aeroelastic system, Journal of Guidance, Control, and Dynamics, 29 (2006) 391-400. [Online available: http: /doi. aiaa. org/ 10. 2514/1. 9462].
DOI: 10.2514/1.9462
Google Scholar
[22]
P. Grof, P. Baranyi, and P. Korondi, Convex hull manipulation based control performance optimisation, WSEAS Transactions on Systems and Control, 5(8) (2010) 691-700.
DOI: 10.1109/raad.2010.5524539
Google Scholar
[23]
B. Takarics, TP model transformation based sliding mode control and friction compensation, Ph.D. dissertation at Computer and Automation Research Institute of the Hungarian Academy of Sciences and Budapest University of Technology and Economics, Budapest, Hungary, (2011).
Google Scholar