[1]
B. Takarics, TP model transformation based sliding mode control and friction compensation, Ph.D. dissertation at Computer and Automation Research Institute of the Hungarian Academy of Sciences and Budapest University of Technology and Economics, Budapest, Hungary, 2011 p.95.
Google Scholar
[2]
Z. Prime, B. Cazzolato, C. Doolan, and T. Strganac, Linear-parameter-varying control of an improved three-degree-of-freedom aeroelastic model, Journal of Guidance, Control, and Dynamics, 33 (2010).
DOI: 10.2514/1.45657
Google Scholar
[3]
V. Mukhopadhyay, Historical perspective on analysis and control of aeroelastic responses, Journal of Guidance, Control, and Dynamics, 26 (2003) 673-684. [Online available: http: /doi. aiaa. org/10. 2514/2. 5108].
DOI: 10.2514/2.5108
Google Scholar
[4]
M. Karpel, Design for active flutter suppression and gust alleviation using state-space aeroelastic modeling, Journal of Aircraft, 19 (1982) 221-227. [Online] available: http: /doi. aiaa. org/10. 2514/3. 57379].
DOI: 10.2514/3.57379
Google Scholar
[5]
H. Ozbay and G. R. Bachmann, H(2)/H(infinity) controller design for a two-dimensional thin airfoil flutter suppression, Journal of Guidance, Control, and Dynamics, 17 (1994) 722-728. [Online available: http: /doi. aiaa. org/10. 2514/3. 21260].
DOI: 10.2514/3.21260
Google Scholar
[6]
J. M. Barker, G. J. Balas, and P. A. Blue, Gain-scheduled linear fractional control for active flutter suppression, Journal of Guidance, Control, and Dynamics, 22 (1999) 507-512. [Online available: http: /doi. aiaa. org/10. 2514/2. 4418].
DOI: 10.2514/2.4418
Google Scholar
[7]
J. M. Barker and G. J. Balas, Comparing linear parameter-varying gain-scheduled control techniques for active flutter suppression, Journal of Guidance, Control, and Dynamics, 23(5) (2000) 948-955.
DOI: 10.2514/2.4637
Google Scholar
[8]
P. Baranyi, Tensor product model-based control of two-dimensional aeroelastic system, Journal of Guidance, Control, and Dynamics, 29 (2006) 391-400. [Online available: http: /doi. aiaa. org/10. 2514/1. 9462].
DOI: 10.2514/1.9462
Google Scholar
[9]
P. Grof, P. Baranyi, and P. Korondi, Convex hull manipulation based control performance optimisation, WSEAS Transactions on Systems and Control, 5(8) (2010) 691-700.
DOI: 10.1109/raad.2010.5524539
Google Scholar
[10]
J.M. van Oosten and E. Bakker, Determination of magic tyre model parameters, in: Tyre models for vehicle dynamics (Hans B. Pacejka Ed. ), Proceedings of 1st International Colloquium on Tyre Models for Vehicle Dynamics Analysis, Delft, The Netherlands, October 21–22, 1991, Supplement to Vehicle System Dynamics, Volume 21 (1993).
DOI: 10.1080/00423119208969995
Google Scholar
[11]
L. Lidner, Experience with the magic formula tyre model, in: Tyre Models for Vehicle Dynamics (Hans B. Pacejka Ed. ), Proceedings of 1st International Colloquium on Tyre Models for Vehicle Dynamics Analysis, Delft, The Netherlands, October 21–22, 1991, Supplement to Vehicle System Dynamics, Volume 21 (1993).
DOI: 10.1080/00423119208969996
Google Scholar
[12]
K. Yagi, K. Kyogoku, and T. Nakamura, Relationship between temperature distribution in EHL film and dimple formation, Proc. of the 2004 ASME/STLE International J. Tribology Conference, (2004).
DOI: 10.1115/trib2004-64073
Google Scholar
[13]
M. Papageorgiou: Some remarks on macroscopic traffic flow modeling, Transportation Research, A 32(5) (1998) 323-329.
DOI: 10.1016/s0965-8564(97)00048-7
Google Scholar
[14]
S.P. Hoogendoorn and P.H.L. Bovy, State-of-the-art of vehicular traffic flow modelling, Proceedings of the Institution of Mechanical Engineers, Part I, Journal of Systems and Control Engineering, 215(4) (2001) 283-303.
DOI: 10.1177/095965180121500402
Google Scholar
[15]
T. Luspay, B. Kulcsar, I. Varga, and J. Bokor, Parameter-dependent modeling of freeway traffic flow, Transportation Research Part C: Emerging Technologies, 18(4) (2010) 471-488.
DOI: 10.1016/j.trc.2009.09.005
Google Scholar
[16]
A.M. Lyapunov, Stability of motion, Academic Press, New-York and London, (1966).
Google Scholar
[17]
Jean-Jacques E. Slotine, W. Li, Applied Nonlinear Control, Prentice Hall International, Inc., Englewood Cliffs, New Jersey, (1991).
Google Scholar
[18]
J.K. Tar, J.F. Bitó, I.J. Rudas, Replacement of Lyapunov's direct method in model reference adaptive control with robust fixed point transformations, Proc. of the 14th IEEE International Conference on Intelligent Engineering Systems 2010, Las Palmas of Gran Canaria, Spain, May 5-7, 231. 235.
DOI: 10.1109/ines.2010.5483841
Google Scholar
[19]
J.K. Tar, L. Nádai, I.J. Rudas, T.A. Várkonyi, Adaptive emission control of freeway traffic using quasi-stationary solutions of an approximate hydrodynamic model, Journal of Applied Nonlinear Dynamics, 1(1) (2012) 29-50.
DOI: 10.5890/jand.2011.12.002
Google Scholar
[20]
J.K. Tar, I.J. Rudas, Sz. Menthy, Iterative adaptive control of a strongly underactuated mechanical system with limited possibilities for state observation, Proc. of the 16th IEEE International Conference on Intelligent Engineering Systems 2012 (INES 2012), Lisbon, Portugal, 2012. 06. 13-2012. 06. 15., 241-246.
DOI: 10.1109/ines.2012.6249838
Google Scholar