A Novel Embed Fluorescence Method for Monitoring the Change from Emulsion Polymeriztion to Microemulsion Polymerization

Article Preview

Abstract:

In this paper, we present a novel embed fluorescence method that allows one to monitor the change from emulsion polymerization to microemulsion polymerization with low monomer contents. The microemulsion polymerization of methyl methacrylate (MMA) was investigated using N-(2-anthracene) methacrylamide (AnMA) as the probe whose fluorescence emission intensity was proportional to the conversion of MMA into the polymer.In this research, the trace amount of AnMA unit looked like embed in the MMA chain. In a solution containing 3wt% of MMA with respect to water, with the anionic surfactant of sodium dodecyl sulphate (SDS) and water-soluble initiator of potassium persulfate (KPS), the process of changing from emulsion to microemulsion has been monitored. By contrast, with the non-ionic surfactant of polyoxyethylene (20) oleyl ether (Brij98) or water-insoluble initiator of 2,2′-azobis(isobutyronitrile) (AIBN), the process of changing from emulsion to microemulsion also have been monitored.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

323-328

Citation:

Online since:

February 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.D. Morgan, K.M. Lusvardi and E.W. Kaler. Macromolecules, Vol. 30 (1997), p.1897.

Google Scholar

[2] L.M. Gan, K.C. Lee, C.H. Chew and S.C. Ng. Langmuir, Vol. 11 (1995) , p.449.

Google Scholar

[3] M. Antonietti and K. Landfester. Prog. Polym. Sci. Vol. 27 (2002) , p.689.

Google Scholar

[4] J. Snuparek. Prog. Org. Coat. Vol. 29 (1996), p.225.

Google Scholar

[5] L. Feng and K.Y.S. Ng. Langmuir, Vol. 23 (1990) , p.1048.

Google Scholar

[6] G.W. Poehlein, D.J. Dougherty. Rubber. Chem. Technol. Vol. 50 (1977), p.601.

Google Scholar

[7] B. Li, B.W. Brooks. Polym. Int. Vol. 29 (1992) , p.41.

Google Scholar

[8] J. Gao, A. Penlidis. Prog. Polym. Sci. 27 (2002), p.403.

Google Scholar

[9] C.S. Chern. Encyclopedia of surface and colloid science. New York: Marcel Dekker; 2002. p.4220.

Google Scholar

[10] M. Nomura, H. Tobita, K. Suzuki. Adv. Polym. Sci. Vol. 175 (2005), p.1.

Google Scholar

[11] I. Capek. Adv. Colloid. Interface. Sci. Vol. 80 (1999), p.85.

Google Scholar

[12] I. Capek. Adv. Colloid. Interface. Sci. Vol. 82 (1999), p.253.

Google Scholar

[13] I. Capek, C.S. Adv. Polym. Sci. Vol. 155 (2001), p.101.

Google Scholar

[14] J.M. Asua. Prog. Polym. Sci. Vol. 27 (2002), p.1283.

Google Scholar

[15] J.M. Warman, R.D. Abellon, L.H. Luthjens, J.W.A. Suykerbuyk, H.J. Verhey and J.W. Verhoeven. Nucl. Instr. and Meth. In Phys. Res. B. Vol. 151 (1999) , p.361.

Google Scholar

[16] J.M. Warman, R.D. Abellon, H.J. Verhey, J.W. Verhoeven and J.W. Hofstraat. J. Phys. Chem. B. Vol. 101 (1997) , p.4913.

Google Scholar

[17] M.S. Frahn, R.D. Abellon, W.F. Jager, L.H. Luthjens and J.M. Warman. Nucl. Instr. and Meth. in Phys. Res. B. Vol. 185 (2001) , p.241.

Google Scholar

[18] M.S. Frahn, L.H. Luthjens and J.M. Wraman. Polymer, Vol. 44 (2003) , p.7933.

Google Scholar