[1]
Norberto Pires, J. Industrial Robot Programming, Building Applications for the Factories of the Future. Springer, 1st edition (2007).
Google Scholar
[2]
Sicilano, B. and Villani, L. Robot force control. Springer, 1st edition (2000).
Google Scholar
[3]
Fuki, H. Et. Al. Development of Teaching Pendant Optimized for Robot Application. In proceedings of IEEE Workshop on Adv. Robotics and its Social Impacts. Tokyo, Japan, November 23-25, (2009).
Google Scholar
[4]
Skoglund, A., Iliev, B. and Palm, R. Programming-by-Demonstration of reaching motions_A next-state-planner Approach. Robotics and Autonomous Systems, Vol. 58. No. 5, (2010). pp.607-621.
DOI: 10.1016/j.robot.2009.12.003
Google Scholar
[5]
Aleoti, J., Casellini, S. and Regianni, M. Evaluation of Virtual Fixtures for a Robot Programming by Demonstration Interface. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, Vol. 35, No. 4, (2005). pp.536-545.
DOI: 10.1109/tsmca.2005.850604
Google Scholar
[6]
Hokayem, P. and Spong, M. Bilateral teleoperation: an historical survey. Automatica, Vol. 42, No. 12, (2006) p.2035–(2057).
DOI: 10.1016/j.automatica.2006.06.027
Google Scholar
[7]
Arimoto, S. Joint-space orthogonalization and passivity for physical interpretations of dextrous robot motions under geometric constraints. Int. J. of Robust and Nonlinear Control. Vol. 5, No. 4, (1995). p.259–284.
DOI: 10.1002/rnc.4590050404
Google Scholar
[8]
E. Bayo and A. Avello. Singularity-free augmented Lagrangian algorithms for constrained multibody dynamics. Nonlinear Dynamics, vol. 5, (1994) p.209–231.
DOI: 10.1007/bf00045677
Google Scholar
[9]
J. Mendez-Iglesias, V. Parra-Vega, and F. Ruiz-Sanchez. Identification of the human behavior in virtual environment tasks as a non–linear control block. in Proceedings of the 16th IFAC World Congress, Czec Republic, Nov (2005).
DOI: 10.3182/20050703-6-cz-1902.01409
Google Scholar