Numerical Study of Batoid with Asymmetrically Undulating Pectoral Fins

Article Preview

Abstract:

This paper presents a numerical study of three dimensional flows around a self-propelled batoid with asymmetrically undulating pectoral fins. During the dynamic simulation, the difference of phase angle of the asymmetric motion is set to 180° between left pectoral fin and right pectoral fin. To evaluate the swimming performance of batoid with asymmetric undulating fins, kinematic and dynamic parameters have been used comparing with that of batoid with symmetric undulating fins. The simulation results show that asymmetric motion can achieve better starting and accelerating performance than symmetric motion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-96

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Bandyopadhyay, P. R. Maneuvering hydrodynamics of fish and small underwater vehicles. Integr. Comp. Biol. Vol. 42 (2002), pp.102-117.

DOI: 10.1093/icb/42.1.102

Google Scholar

[2] Zhu, Q., Wolfgang, M. J., Yue, D. K. P. and Triantafyllou, M. S. Three-dimensional flow structures and vorticity control in fish-like swimming. J. Fluid Mech. Vol. 468 (2002), pp.1-28.

DOI: 10.1017/s002211200200143x

Google Scholar

[3] Lauder, G. V., Madden, P. G. A., Mittal, R., Dong, H. and Bozkurttas, M. Locomotion with flexible propulsors I: experimental analysis of pectoral fin swimmingin sunfish. Bioinspir. Biomim. Vol. 1 (2006), p. S25-S34.

DOI: 10.1088/1748-3182/1/4/s04

Google Scholar

[4] Tytell, E. D., Standen, E. M. and Lauder, G. V. Escaping flatland: three-dimensional kinematics and hydrodynamics of median fins in fishes. J. Exp. Biol. Vol. 211 (2008), pp.187-195.

DOI: 10.1242/jeb.008128

Google Scholar

[5] Alben, S., Madden, P. G. and Lauder, G. V. The mechanics of active fin-shape control in ray-finned fishes. J. R. Soc. Interface 4 (2007), pp.243-256.

DOI: 10.1098/rsif.2006.0181

Google Scholar

[6] Wilga, C. D. and Lauder, G. V. Three-dimensional kinematics and wake structure of the pectoral fins during locomotion in leopard sharks Triakis semifasciata. J. Exp. Biol. Vol. 203 (2000), pp.2261-2278.

DOI: 10.1242/jeb.203.15.2261

Google Scholar

[7] Tangorra, J. L., Davidson, S. N., Hunter, I. W., Madden, P. G. A., Lauder, G. V., Dong, H., Bozkurttas, M. and Mittal, R. The development of a biologically inspired propulsor for unmanned underwater vehicles. IEEE J. Oceanic Eng. Vol. 32 (2007).

DOI: 10.1109/joe.2007.903362

Google Scholar

[8] Heathcote S, Wang Z, Gursul I. Effect of spanwise flexibility on flapping wing propulsion. J. Fluid Struct. Vol. 24 (2008), p.183–199.

DOI: 10.1016/j.jfluidstructs.2007.08.003

Google Scholar

[9] Yang S B, Qiu J, Han X Y. Kinematics modeling and experiments of pectoral oscillation propulsion robotic fish. J. Bionic. Eng. Vol. 6 (2009), p.174–179.

DOI: 10.1016/s1672-6529(08)60114-6

Google Scholar

[10] J. Lee and D.H. Kwon. Parameter analysis of batoid fin motions using fluid-structure interaction-based simulation and design of experiments. Proc. IMechE. Vol. 225(8) (2011), pp.1863-1873.

DOI: 10.1177/0954406211404103

Google Scholar

[11] SHAO Xue-ming, PAN Ding-yi and Deng Jian et al. Numerical studies on the propulsion and wake structures of finite-span flapping wings with different aspect ratios. J. Hydrodyn. Vol. 22(2) (2010), pp.147-154.

DOI: 10.1016/s1001-6058(09)60040-8

Google Scholar

[12] James L. Tangorra, George V. Lauder, Ian W. Hunter, Rajat Mittal, Peter G.A. Madden and Meliha Bozkurttas. The effect of fin ray flexural rigidity on the propulsive forces generated by a biorobotic fish pectoral fin. J. Exp. Biol. Vol. 213 (2010).

DOI: 10.1242/jeb.048017

Google Scholar

[13] R.P. Clark, A.J. Smits. Thrust production and wake structure of a batoid-inspired oscillating fin. J. Fluid Mech. Vol. 562 (2006), pp.415-429.

DOI: 10.1017/s0022112006001297

Google Scholar

[14] Rosenberger, L. J. Pectoral fin locomotion in batoid fishes: undulation versus oscillation. J. Exp. Biol. Vol. 204 (2001), pp.379-394.

DOI: 10.1242/jeb.204.2.379

Google Scholar

[15] CHEN Wei-shan, WU Zhi-jun, LIU Junkao, SHI Sheng-jun, ZHOU Yang. Numerical simulation of batoid locomotion. J. Hydrodyn. Vol. 23(5) (2011), pp.594-600.

DOI: 10.1016/s1001-6058(10)60154-0

Google Scholar