[1]
Bandyopadhyay, P. R. Maneuvering hydrodynamics of fish and small underwater vehicles. Integr. Comp. Biol. Vol. 42 (2002), pp.102-117.
DOI: 10.1093/icb/42.1.102
Google Scholar
[2]
Zhu, Q., Wolfgang, M. J., Yue, D. K. P. and Triantafyllou, M. S. Three-dimensional flow structures and vorticity control in fish-like swimming. J. Fluid Mech. Vol. 468 (2002), pp.1-28.
DOI: 10.1017/s002211200200143x
Google Scholar
[3]
Lauder, G. V., Madden, P. G. A., Mittal, R., Dong, H. and Bozkurttas, M. Locomotion with flexible propulsors I: experimental analysis of pectoral fin swimmingin sunfish. Bioinspir. Biomim. Vol. 1 (2006), p. S25-S34.
DOI: 10.1088/1748-3182/1/4/s04
Google Scholar
[4]
Tytell, E. D., Standen, E. M. and Lauder, G. V. Escaping flatland: three-dimensional kinematics and hydrodynamics of median fins in fishes. J. Exp. Biol. Vol. 211 (2008), pp.187-195.
DOI: 10.1242/jeb.008128
Google Scholar
[5]
Alben, S., Madden, P. G. and Lauder, G. V. The mechanics of active fin-shape control in ray-finned fishes. J. R. Soc. Interface 4 (2007), pp.243-256.
DOI: 10.1098/rsif.2006.0181
Google Scholar
[6]
Wilga, C. D. and Lauder, G. V. Three-dimensional kinematics and wake structure of the pectoral fins during locomotion in leopard sharks Triakis semifasciata. J. Exp. Biol. Vol. 203 (2000), pp.2261-2278.
DOI: 10.1242/jeb.203.15.2261
Google Scholar
[7]
Tangorra, J. L., Davidson, S. N., Hunter, I. W., Madden, P. G. A., Lauder, G. V., Dong, H., Bozkurttas, M. and Mittal, R. The development of a biologically inspired propulsor for unmanned underwater vehicles. IEEE J. Oceanic Eng. Vol. 32 (2007).
DOI: 10.1109/joe.2007.903362
Google Scholar
[8]
Heathcote S, Wang Z, Gursul I. Effect of spanwise flexibility on flapping wing propulsion. J. Fluid Struct. Vol. 24 (2008), p.183–199.
DOI: 10.1016/j.jfluidstructs.2007.08.003
Google Scholar
[9]
Yang S B, Qiu J, Han X Y. Kinematics modeling and experiments of pectoral oscillation propulsion robotic fish. J. Bionic. Eng. Vol. 6 (2009), p.174–179.
DOI: 10.1016/s1672-6529(08)60114-6
Google Scholar
[10]
J. Lee and D.H. Kwon. Parameter analysis of batoid fin motions using fluid-structure interaction-based simulation and design of experiments. Proc. IMechE. Vol. 225(8) (2011), pp.1863-1873.
DOI: 10.1177/0954406211404103
Google Scholar
[11]
SHAO Xue-ming, PAN Ding-yi and Deng Jian et al. Numerical studies on the propulsion and wake structures of finite-span flapping wings with different aspect ratios. J. Hydrodyn. Vol. 22(2) (2010), pp.147-154.
DOI: 10.1016/s1001-6058(09)60040-8
Google Scholar
[12]
James L. Tangorra, George V. Lauder, Ian W. Hunter, Rajat Mittal, Peter G.A. Madden and Meliha Bozkurttas. The effect of fin ray flexural rigidity on the propulsive forces generated by a biorobotic fish pectoral fin. J. Exp. Biol. Vol. 213 (2010).
DOI: 10.1242/jeb.048017
Google Scholar
[13]
R.P. Clark, A.J. Smits. Thrust production and wake structure of a batoid-inspired oscillating fin. J. Fluid Mech. Vol. 562 (2006), pp.415-429.
DOI: 10.1017/s0022112006001297
Google Scholar
[14]
Rosenberger, L. J. Pectoral fin locomotion in batoid fishes: undulation versus oscillation. J. Exp. Biol. Vol. 204 (2001), pp.379-394.
DOI: 10.1242/jeb.204.2.379
Google Scholar
[15]
CHEN Wei-shan, WU Zhi-jun, LIU Junkao, SHI Sheng-jun, ZHOU Yang. Numerical simulation of batoid locomotion. J. Hydrodyn. Vol. 23(5) (2011), pp.594-600.
DOI: 10.1016/s1001-6058(10)60154-0
Google Scholar