A New Spectrophotometric Method for the Determination of Trace O3 Using the Particle Reaction of Rhodamine 6G-I3

Article Preview

Abstract:

O3 reacted with KI-H3BO3 absorption solution to produce I2 which can combine with the excess I- to form I3-. In pH 4.0 HAc-NaAc buffer solution, I3- reacted with rhodamine 6G (Rh6G) to form Rh6G-I3 association particles, which exhibited a great decreasing at 525 nm. Under the chosen conditions, the decreased intensity ΔA was linear to I2 concentration in the range of 0.5×10-6-33×10-6 mol/L. Thus, a highly sensitive and selective spectrophotometric method was proposed to detect O3 in the air, since the concentration of O3 was equal to that of I2 in this reacted system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

178-181

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.X. Wu and M.Z. Lu: Chin. J. Nat. Med. Vol. 4 (2002), p.227.

Google Scholar

[2] T.M. Xu, X.Y. Sun and J.N. Ye: Chin. J. Environ. Sci. Vol. 4 (1983), p.38.

Google Scholar

[3] E.L. Machado, M.B. Rosa, E.M.M. Flores, J.N.G. Paniz and A.F. Martins: Anal. Chim. Acta Vol. 380 (1999), p.93.

Google Scholar

[4] A.M. Jimenez, M.J. Navas and G.Galan: Appl. Spect. Rev. Vol. 32 (1997), p.141.

Google Scholar

[5] C. Eipel, P. Jeroschewski and I. Steinke: Anal. Chim. Acta Vol. 491 (2003), p.145.

Google Scholar

[6] T. Takayanagi and P.K. Dasgupta: Talanta Vol. 66 (2005), p.823.

Google Scholar

[7] I. Cesarino, F.C. Moraes, S.A.S. Machado and J.P. Filho: Electroanal. Vol. 23 (2011), p.1512.

Google Scholar

[8] R. Knake and P.C. Hauser: Anal. Chim. Acta Vol. 459 (2002), p.199.

Google Scholar

[9] G.Q. Gong, Q.Z. Zhu and H.G. Wang: Anal. Chim. Acta Vol. 298 (1994), p.135.

Google Scholar

[10] E.P. Felix, J.P. Filho, G. Garcia and A.A. Cardoso: Microchem J. Vol. 99 (2011), p.530.

Google Scholar

[11] H. Erxleben, J. Simon, L.N. Moskvin, L.O. Vladimirovna and T.G. Nikitina: Fres. J. Anal. Chem. Vol. 366 (2000), p.332.

Google Scholar

[12] S. Ohira, P.K. Dasgupta and K.A. Schug: Anal. Chem. Vol. 81 (2009), p.4183.

Google Scholar

[13] F. Berger, B. Ghaddab, J.B. Sanchez and C. Mavon: J. Phy. Conf. Ser. (2011), p.307.

Google Scholar

[14] B. Ghaddab and J.B. Sanchez: Sens. Actuators B Vol. 170 (2012), p.67.

Google Scholar

[15] A.H. Liang, Z.L. Jiang and B.M. Zhang: Anal. Chim. Acta Vol. 530 (2005), p.131.

Google Scholar

[16] Z.L. Jiang, S.M. Zhou, A.H. Liang, C.Y. Kang and X.C. He: Environ. Sci. Technol. Vol. 40 (2006), p.4286.

Google Scholar

[17] Z.L. Jiang, K. Li, H.X. Ouyang, A.H. Liang and H.S. Jiang. J. Fluoresc. Vol. 21 (2011), p.2015.

Google Scholar

[18] Z.L. Jiang, B.M. Zhang and A.H. Liang: Talanta Vol. 66 (2005), p.783.

Google Scholar

[19] Y.H. Luo, K. Li, G.Q. Wen, Q.Y. Liu, A.H. Liang and Z.L. Jiang: Plasmonics Vol. 7 (2012), p.461.

Google Scholar

[20] Z. L. Jiang: Talanta Vol. 38 (1991), p.621.

Google Scholar