Red Light Emission from Silicon Created by Self-Ion Implantation and Thermal Annealing

Article Preview

Abstract:

Silicon substrates were implanted with Si ions at an energy of 60 keV to a dose of 5×1015 cm-2 followed by a thermal annealing at various temperatures up to 950 oC. Photoluminescence (PL) and infrared absorption (IRA) techniques have been used to characterize these samples. The PL peak positions at 2.07 eV and 1.93 eV undergo redshifts with the increasing annealing temperature. The two IRA peaks at 1080 cm-1 and 800 cm-1 are ascribed to the Si-O-Si asymmetric stretching and the Si-O bending vibration, respectively. The experimental results indicate that Si nanocrystals embedded in silicon oxide layer can be formed at the annealing temperature 800 oC or higher.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-113

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.Z. Yuan and D.R. Yang: Materials Review, Vol. 19 (2005) No.1, p.82 (In Chinese).

Google Scholar

[2] D.M. Zhigunov, N.V. Shvydun, A.V. Emelyanov, V. Yu. Timoshenko, P.K. Kashkarov and V.N. Seminogov: Semiconductors, Vol. 46 (2012) No.3, p.354.

DOI: 10.1134/s1063782612030244

Google Scholar

[3] F. Patolsky and C.M. Lieber: Materials Today, Vol. 8 (2005) No. 4, p.20.

Google Scholar

[4] J. Heitmann, F. Muller, L. Yi and M. Zacharias: Phys. Rev. B, Vol. 69 (2004), pp.195309-1.

Google Scholar

[5] G.M. Dalpian and J.R. Chelikowsky: Physical Review Letters, Vol. 96 (2006) No. 22, pp.226802-1.

Google Scholar

[6] T.S. Iwayama, D.E. Hole and P.D. Townsend: Physics Research B, Vol. 147 (1999), p.350.

Google Scholar

[7] F. Lacona, C. Bongiorno and C. Spinella: Journal of Applied Physics, Vol. 95 (2004) No. 7, p.3722.

Google Scholar

[8] R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro and F. Brandi: Optical Materials Express, Vol. 2 (2012) No. 5, p.510.

DOI: 10.1364/ome.2.000510

Google Scholar

[9] H.J. Fitting, L.F. Kourkoutis, B. Schmidt, B. Liedke, E.V. Ivanova, M.V. Zamoryanskaya, V.A. Pustovarov and A.F. Zatsepin: Phys. Status Solidi A, Vol. 209 (2012) No. 6, p.1101.

DOI: 10.1002/pssa.201127617

Google Scholar

[10] Y.F. Du, L.X. Yi, S.W. Wang and Y. Wu: Spectroscopy and Spectral Analysis, Vol. 29 (2009) No. 6, p.1486 (In Chinese).

Google Scholar

[11] X.B. Gu: The Methods on Modification of Materials by Plasma Immersion ion Implantation (MS., FuDan University, China 2009), p.1.

Google Scholar

[12] Y.M. Luo, Z.H. Chen and P.Y. Huang: Materials Review, Vol. 18 (2004) No. 7, p.101.

Google Scholar

[13] J.W. Mayer: Ion Implantation in Semiconductors Silicon and Germanium (Science Press, China 1979).

Google Scholar

[14] K. Nishio and J. Koga: Physical Review B, Vol. 67 (2003) No. 19, pp.195304-1.

Google Scholar

[15] O.S. Yeltsina, D.A. Andronikov, A.V. Kukin, J.S. Vainshtein and O.M. Sreseli: Phys. Status Solidi C, Vol. 9 (2012) No. 6, p.1471.

DOI: 10.1002/pssc.201100751

Google Scholar

[16] G. Allan, C. Delerue and M. Lannoo: Physical Review Letters, Vol. 78 (1997) No. 16, p.3161.

Google Scholar

[17] M.V. Wolkin, J. Jorne and P.M. Fauchet: Physical Review Letters, Vol. 82 (1999) No. 1, p.197.

Google Scholar

[18] L.R. Gong and L.J. Chun: Journal of Applied Physics, Vol. 95 (2004) No. 12, p.8484.

Google Scholar

[19] F.F. Gracia, M. Aceves, J. Carrillo, C. Dominguez and C. Falcony: Superficies y Vacio, Vol. 18 (2005) No. 2, p.7.

Google Scholar

[20] J. Serra, P. Gonzalez, S. Liste, C. Liste, C. Serra, S. Chiussi, B. Leon, M. P. Amor, H. O. Ylanen and M. Hupa: Journal of Non-Crystalline Solids, Vol. 332 (2003), p.20.

DOI: 10.1016/j.jnoncrysol.2003.09.013

Google Scholar

[21] P. Lu, J.W. Shen and Q.M. Wang: Journal of Functional Materials, Vol. 39 (2008) No. 1, p.44 (In Chinese).

Google Scholar

[22] S.W. Wang, L.X. Yi, E.G. Chen and Y.S. Wang: Spectroscopy and Spectral Analysis, Vol. 27 (2007) No. 3, p.456 (In Chinese).

Google Scholar