Large Reversible Capacity of Graphene Electrodes Used in Lithium-Ion Batteries

Article Preview

Abstract:

High quality graphene sheets (GSs) were prepared from natural graphite by oxidation, rapid thermal expansion and ultrasonic treatment. The morphology and structure of GSs were systematically investigated by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier tansform infrared spectroscopy (FT-IR) and Raman spectroscopy. It was found that the GSs electrode used in lithium-ion battery (LIB) exhibited a relatively high reversible capacity of 902 mA h/g at a current density of 50 mA/g. After 50 cycles, the reversible capacity was still kept at 734 mA h/g.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

114-118

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.M. Tarascon and M. Armand: Nature Vol. 414 (1992), p.119

Google Scholar

[2] P.G. Bruce, B. Scrosati and J.M. Tarascon: Angew. Chem. Int. Ed. Vol. 47 (2008), p.2930

Google Scholar

[3] S.H. Ng, J.Z. Wang, D. Wexler, K. Konstantinov, Z.P. Guo and H.K. Liu: Angew. Chem. Int. Ed. Vol. 45 (2006), p.6896

Google Scholar

[4] Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa and T. Miyasaka: Science Vol. 276 (1997), p.1395

Google Scholar

[5] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J.M. Tarascon: Nature Vol. 407 (2000), p.496

Google Scholar

[6] H. Zhou, S. Zhu, M. Hibino, I. Honma and M. Ichihara: Adv. Mater. Vol. 15 (2003), p.2107

Google Scholar

[7] P.L. Taberna, S. Mitra, P. Poizot, P. Simon and J.M. Tarascon: Nat. Mater. Vol. 5 (2006), p.567

Google Scholar

[8] C.K. Chan, H. Peng, G. Liu, K.M. Wrath, X.F. Zhang, R.A. Huggins and Y. Cui: Nat. Nanotechnol. Vol. 3 (2008), p.31

Google Scholar

[9] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov: Science Vol. 306 (2004), p.666

DOI: 10.1126/science.1102896

Google Scholar

[10] E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo and I. Honma: Nano Lett. Vol. 8 (2008), p.2277

Google Scholar

[11] D. Pan, S. Wang, B. Zhao, M. Wu, H. Zhang, Y. Wang and Z. Jiao: Chem. Mater. Vol. 21 (2009), p.3136

Google Scholar

[12] P. Guo, H. Song and X. Chen: Electrochem. Commun. Vol. 11 (2009), P. 1320

Google Scholar

[13] G. Wang, X. Shen, J. Yao and J. Park: Carbon Vol. 47 (2009), P. (2049)

Google Scholar

[14] H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud'homme, R. Car, D.A. Saville and I.A. Aksay: J. Phys. Chem. B Vol. 110 (2006), p.8535

DOI: 10.1021/jp060936f

Google Scholar

[15] L. Staudenmaier: Ber. Dtsch. Chem. Ges. Vol. 31 (1898), p.1481

Google Scholar

[16] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth and S. Roth: Nature Vol. 446 (2007), P. 60

Google Scholar

[17] M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.A. Cancado, A. Jorio and R. Sato: Phys. Chem. Chem. Phys. Vol. 9 (2007), P. 1276

DOI: 10.1039/b613962k

Google Scholar

[18] D. Aurbach: J. Power Sources Vol. 89 (2000), P. 206

Google Scholar

[19] W. Xing and J.R. Dahn: J. Electrochem. Soc. Vol. 144 (1997), P. 1195

Google Scholar

[20] Y. Wu, C. Jiang, C. Wan and E. Tsuchida: Electrochem. Commun. Vol. 2 (2000), P. 271

Google Scholar

[21] S. Yang, H. Song and X. Chen: Electrochem. Commun. Vol. 8 (2006), p.137

Google Scholar