Anomalous Optical Transmission Phenomena in Photonic Crystals

Article Preview

Abstract:

Anomalous optical transmission phenomena have ever been discovered in various metamaterials, which can be modulated more easily in Photonic crystals (PhCs). Compared with the regular PhCs composed of round rods closely packed in air, the equal frequency contours (EFC) of honeycomb lattice PhCs constituted by trigonal rods are more rounded and more suitable to realize the all-angle left-handed negative refraction (AALNR) in the low band region. Due to the hex EFC distribution, the regular PhC can be applied in the optical collimator design. In the higher band regions, the more complicated refraction behaviors can be excited based on the intricate undulation of one band or the overlap of different bands in PhCs. These unique features will provide us with more understanding of electromagnetic wave propagation in PhCs and give important guideline for the design of new type optical devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

128-132

Citation:

Online since:

May 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449-521 (2005)

DOI: 10.1088/0034-4885/68/2/r06

Google Scholar

[2] V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005)

DOI: 10.1364/ol.30.003356

Google Scholar

[3] G. Sun, A. S. Jugessur, and A. G. Kirk, "Imaging properties of dielectric photonic crystal slabs for large object distances ," Opt. Express 14, 6755-6765 (2006).

DOI: 10.1364/oe.14.006755

Google Scholar

[4] R. A. Shelby, D. R. Smith, S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).

DOI: 10.1126/science.1058847

Google Scholar

[5] J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).

DOI: 10.1103/physrevlett.85.3966

Google Scholar

[6] P. Vodo, P. V. Parimi, W. T. Lu and S. Sridhar, "Focusing by planoconcave lens using negative refraction," Appl. Phys. Lett. 86, 201108 (2005).

DOI: 10.1063/1.1927712

Google Scholar

[7] C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian and D. C. Vier, "Performance of a negative index of refraction lens," Appl. Phys. Lett. 84, 3232-3234 (2004).

DOI: 10.1063/1.1728304

Google Scholar

[8] A. Kim, K. B. Chung, and J. W. Wu, "Control of self-collimated Bloch waves by partially flat equifrequency contours in photonic crystals," Appl. Phys. Lett. 89, 251120 (2006).

DOI: 10.1063/1.2423237

Google Scholar

[9] L. J. Wu, M. Mazilu, J. F. Gallet, T. F. Krauss, A. Jugessur, and R. M. De La Rue, "Planar photonic crystal polarization splitter" Opt. Lett. 29, 1620 (2004).

DOI: 10.1364/ol.29.001620

Google Scholar

[10] Y. Luo, W. Zhang, Y. Huang, J. Zhao, and J. Peng, "Wide-angle beam splitting by use of positive–negative refraction in photonic crystals," Opt. Lett. 29, 2920-2922 (2004).

DOI: 10.1364/ol.29.002920

Google Scholar

[11] Xue-liang Kang, Guo-jun Li, and Yong-ping Li, "Positive-negative refraction effect based on overlapping bands in a two-dimensional photonic crystal," J. Opt. Soc. Am. B 26, 010060 (2009).

DOI: 10.1364/josab.26.000060

Google Scholar

[12] R. Gajic, R. Meisels, F. Kuchar, and K. Hingerl, "Refraction and rightness in photonic crystals" Opt. Express 13, 8596- 8605 (2005).

DOI: 10.1364/opex.13.008596

Google Scholar

[13] K. Ren, Z. Y. Li, X. B. Ren, S. Feng, B. Y. Cheng, and D. Z. Zhang, "Three-dimensional light focusing in inverse opal photonic crystals," Phys. Rev. B 75, 115108 (2007).

DOI: 10.1103/physrevb.75.115108

Google Scholar

[14] P. T. Rakich, M. Dahlem, S. Tandon, M. Ibanescu, M. Soljačić, G. Petrich, J. D. Joannopoulos, L. Kolodziejski, and E. Ippen, "Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal," Nat. Mater. 5, 93-96 (2006).

DOI: 10.1038/nmat1568

Google Scholar

[15] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystal," Appl. Phys. Lett. 74, 1212-1214 (1999).

DOI: 10.1063/1.123502

Google Scholar

[16] G. Y. Dong, X. L. Yang, L. Z. Cai, "Anomalous refractive effects in honeycomb lattice photonic crystals formed by holographic lithography" Optics Express 18, 16302 (2010).

DOI: 10.1364/oe.18.016302

Google Scholar

[17] G. Y. Dong, J. Zhou, X. L. Yang, L. Z. Cai, "Dual negative refraction in photonic crystals with hexagonal lattices" Optics Express 18, 16302 (2011).

DOI: 10.1364/oe.19.012119

Google Scholar