Preparation and Photoelectrochemical Properties of TiO2 Nanotube Arrays Modified with Nano-Scaled CdSe

Article Preview

Abstract:

Highly ordered TiO2 nanotube arrays (TNTAs) with smooth walls and uniform diameter were prepared by electrochemical anodization. And then solution deposition process was adopted for the modification of the TNTAs with nanoscaled CdSe. The materials obtained were characterized by field emission scanning electron microscopy, UVvisible spectroscopic and photoelectrochemical techniques. The results revealed that the morphologies and growth mechanism for CdSe/TNTAs composites varied with the reaction time in Se2- solutions (c=1.2 mol/L) when nanotubes were firstly imported with Cd2+ ions. Optical absorption behavior of the CdSe/TNTAs composites increased with more CdSe nanoparticles. And the photo-response of the obtained nanomaterials was first strengthened and then declined with the sustained increase of the deposited CdSe.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

138-142

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Zhu, N.R. Neale and A. Miedaer:Nano Lett., Vol.7 (2007), p.69.

Google Scholar

[2] F. Mura, A. Masci, M. Pasquali and A. Pozio: Electrochimica Acta, Vol.55 (2010) No.6, p.2246.

DOI: 10.1016/j.electacta.2009.11.060

Google Scholar

[3] M. Srinivasan, T. White: Environ Sci Techn, Vol. 41 (2007) No.12, p.4405.

Google Scholar

[4] W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen and L.M. Peng: J. Am. Chem. Soc., Vol. 130 (2008), p.1124.

Google Scholar

[5] Y. Su, S. Chen, X. Quan, H. Zhao and Y. Zhang: Appl. Surf. Sci., Vol. 255 (2008), p.2167.

Google Scholar

[6] K.S. Brammer, S. Oh and C.J. Cobb: Acta Biomaterialia, Vol. 8 (2009) No.5, p.3215.

Google Scholar

[7] K. Shankar, K.C. Tep, G.K. Mor and C.A. Grimes: J. Phys. D: Appl. Phys., Vol. 39 (2006) p.2361.

Google Scholar

[8] X. Chen, X. Zhang, Y. Su and L. Lei: Appl. Surf. Sci., Vol. 254 (2008), p.6693.

Google Scholar

[9] L.X. Yang, S.L. Luo, R.H. Liu, Q.Y. Cai, Y. Xiao, S.H. Liu, F. Su and L.F. Wen: J. Phys. Chem. C, Vol. 114 (2010) No.11, p.4783.

Google Scholar

[10] K. Anusorn, T. Kevin, T. Kensuke, K. Masaru and V. Kamat Prashant:J. Am. Chem. Soc., Vol. 130 (2010) No.12, p.4007.

Google Scholar

[11] H. Zhang , X. Quan, S. Chen , H.T. Yu and N. Ma: Chem. Mater., Vol. 21 (2010) No.14, p.3090.

Google Scholar

[12] Q. Kang, L.X. Yang, Y.F. Chen, S.L. Luo, L.F. Wen, Q.Y. Cai and S.Z. Yao:Anal. Chem.,, Vol. 82 (2010) No.23, p.9749.

Google Scholar

[13] L.P. Liu, J. Hensel, R. Fitzmorris, Y.D. Li and J.Z. Zhang: J. Phys. Chem. Lett., Vol. 1(2010) No.1, p.155.

Google Scholar

[14] X.F. Guan, S.Q. Huang, Q.X. Zhang, X. Shen, H.C. Sun, D.M. Li, Y.H. Luo, R.C. Yu and Q.B. Meng: Nanotechnology, Vol. 22 (2011) No.46, p.1154.

Google Scholar

[15] M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald and C.A. Grimes: J. Phys. Chem. B, Vol. 110 (2006) p.16179.

DOI: 10.1021/jp064020k

Google Scholar

[16] G. Wang , X. Yang and F. Qian : Nano Lett., Vol. 10 (2010) No.3, p.1088–1092

Google Scholar

[17] W.T. Sun, Y. Yu and H.Y. Pan: J. Am. Chem. Soc., Vol. 130 (2008) No.4, p.1124.

Google Scholar

[18] R.J. Pan, Y.C. Wu and K.Y. Liew: Appl. Surf. Sci., Vol. 256 (2010), p.6564

Google Scholar