The Applications of Terahertz Spectroscopy in Functional Optical Materials Researches

Article Preview

Abstract:

Terahertz radiation refers to the electromagnetic wave whose frequency is usually defined between 0.1 and 10 THz (1 THz=1012 Hz). With the development of the emission and detection technologies of THz radiation, terahertz time-domain spectroscopy (THz-TDS) has been widely used in medical diagnosis, security inspection and materials characterization. In this paper, we introduced briefly the progress of terahertz measurement technologies, and then reviewed the applications of THz spectra in functional materials researches. As two important functional optical materials, TiO2 nanoparticles and yttrium aluminum garnet (YAG) crystal have been investigated with THz-TDS. We introduced the electron injection process in TiO2 studied by time resolved THz spectroscopy which is reported in the literature, and then presented our own work, the THz optical constants of undoped and Tm3+ doped YAG crystals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-137

Citation:

Online since:

May 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.S. Lee: Principles of Terahertz Science and Technology (Springer-Verlag, Boston 2008)

Google Scholar

[2] Y.C. Shen, P.C. Upadhya, E.H. Linfield, H.E. Beere and A.G. Davies: Appl. Phys. Lett. Vol. 83 (2003), p.3117

Google Scholar

[3] M. Tani, K.S. Lee and X.C. Zhang: Appl. Phys. Lett. Vol. 77 (2000), p.1396

Google Scholar

[4] C. Winnewisser, P.U. Jepsen, M. Schall, V. Schyja and H. Helm: Appl. Phys. Lett. Vol. 70 (1997), p.3069

Google Scholar

[5] B. Ferguson and X.C. Zhang: Nat. Mater. Vol. 1 (2002), p.26

Google Scholar

[6] Y.P. Yang, W.Z. Wang, Z.W. Zhang, L.L. Zhang and C.L. Zhang: J. Phys. Chem. C Vol. 115 (2011), p.10333

Google Scholar

[7] L. Ren, C.L. Pint, L.G. Booshehri, W.D. Rice, X. Wang, D.J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R.H. Hauge and J. Kono: Nano. Lett. Vol. 9 (2009), p.2610

DOI: 10.1021/nl900815s

Google Scholar

[8] I. Ponomareva, L. Bellaiche, T. Ostapchuk, J. Hlinka and J. Petzelt: Phys. Rev. B Vol. 77 (2008), p.012102

Google Scholar

[9] X. Fu, G. Yang, J. Sun and J. Zhou: J. Phys. Chem. A Vol. 116 (2012), p.7314

Google Scholar

[10] L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen and F. Wang: Nat. Nano. Vol. 6 (2011), p.630

DOI: 10.1038/nnano.2011.146

Google Scholar

[11] T.J. Yen, W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov and X. Zhang: Science Vol. 303 (2004), p.1494

DOI: 10.1126/science.1094025

Google Scholar

[12] H. Nemec, C. Kadlec, F. Kadlec, P. Kuzel, R. Yahiaoui, U.C. Chung, C. Elissalde, M. Maglione and P. Mounaix: Appl. Phys. Lett. Vol. 100 (2012), p.061117

DOI: 10.1109/irmmw-thz.2012.6380098

Google Scholar

[13] P. Kuzel, F. Kadlec, H. Nemec, R. Ott, E. Hollmann and N. Klein: Appl. Phys. Lett. Vol. 88 (2006), p.102901

Google Scholar

[14] C. Kadlec, F. Kadlec, H. Němec, P. Kužel, J. Schubert and G. Panaitov: J. Phys. : Condens. Mat. Vol. 21 (2009), p.115902

DOI: 10.1088/0953-8984/21/11/115902

Google Scholar

[15] W.R. McNamara, R.C. Snoeberger, G. Li, J.M. Schleicher, C.W. Cady, M. Poyatos, C.A. Schmuttenmaer, R.H. Crabtree, G.W. Brudvig and V.S. Batista: J. Am. Chem. Soc. Vol. 130 (2008), p.14329

DOI: 10.1021/ja805498w

Google Scholar

[16] E.D. Palik: Handbook of Optical Constants of Solids (Academic Press, San digo 1998)

Google Scholar