A Review on Gene Delivery System of Layered Double Hydroxide

Article Preview

Abstract:

This paper aims to provide a concise review on the study of a gene delivery system with layered double hydroxides (LDH) as carrier. The issues, such as preparation and cytobiology effect of LDH-DNA hybrids, and the release mechanism of DNA from LDH-DNA complex, were discussed in detail. For achieving a ideal cell transfection efficiency, it would be prospective to improve both the intercalation effect of giant DNA, such as plasmid DNA and long chain DNA fragments, and the gene transfection technique of small DNA fragment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

533-539

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Burzlaff, S. Brethauer, C. Kasper, et al. Cytometry Part A , Vol. 62A (2004) No.1, p.65.

Google Scholar

[2] H. Nakayama, A. Hatakeyama, M. Tsuhako. International Journal of Pharmaceutics, Vol. 393 (2010) No.1-2, p.104.

Google Scholar

[3] A. Li, L.L. Qin, W.R. Wang, et al. Biomaterials ,Vol. 32 (2011) No.2, p.469.

Google Scholar

[4] G.F. Zuo, Y.Z. Wan, X.G. Meng, et al. Materials Chemistry and Physics, Vol. 126 (2011) No.3, p.470.

Google Scholar

[5] M. Singh , M. Briones, G. Ott and D. O'Hagan. Proc Natl Acad Sci USA , Vol. 97 (2000) No.2, p.811.

Google Scholar

[6] L. Illum, I. Jabbal-Gill, M. Hinchcliffe, A.N. Ficsher and S.S. Davis. Adv Drug Deliv Rev , Vol. 51 (2001) No.1-3, p.81.

Google Scholar

[7] J.W. Shiver, T.M. Fu, L. Chen, D.R. Casimiro, M.E. Davies, R.K. Evans, et al. Nature , Vol. 415 (2002) No.6869, p.331.

Google Scholar

[8] J.H. Felgner, R. Kumar, C.N. Sridhar, C.J. Wheeler, Y.J. Tsai, R. Border, et al. The Journal of Biological Chemistry , Vol. 269 (1994) No.4, p.2550.

Google Scholar

[9] G. Gregoriadis, B. McCormack, M. Obrenovic, R. Saffie, B. Zadi and Y. Perrie. Methods, Vol. 19 (1999) No.1, p.156.

DOI: 10.1006/meth.1999.0841

Google Scholar

[10] Y.E. Miao, H. Zhu, D. Chen, et al. Materials Chemistry and Physics, Vol. 134 (2012) No.2-3, p.623.

Google Scholar

[11] Y. Li, D. Liu, H.H Ai, et al. Nanotechnology, Vol. 21 (2010) No.10, p.105101.

Google Scholar

[12] J.M. Oh, C.B. Park and J.H. Hoy. Journal of Nanoscience and Nanotechnology, Vol.11(2011) No.2, p.1632.

Google Scholar

[13] M. Chakraborti, J.K. Jackson, D. Plackett, et al. International Journal of Pharmaceutics, Vol. 416 (2011) No.1, p.305.

Google Scholar

[14] A.A. SH, A.Q. M, M.Z. Hussein, et al. Int J Nanomedicine, Vol. 7 (2012) , p.2129.

Google Scholar

[15] G. Carja, S. Ratoi, G. Ciobanu, S. Dranca, G. Lehutu. Universitatea Politehnica din Timisoara. Buletinul Stiintific. Seria Chimie si Ingineria Mediului, 2008 No. 1-2, p.1224.

Google Scholar

[16] M. Park, C.I. Lee, Y.J. Seo, S.R. Woo, D. Shin and J. Choi. Environ Sci Pollut Res Int , Vol. 17 (2010) No.1, p.203.

Google Scholar

[17] M. Trikeriotis, D.F. Ghanotakis. International Journal of Pharmaceutics, Vol. 332 (2007) No.1-2, p.203.

Google Scholar

[18] S. Jin, P.H. Fallgren, J.M. Morris and Q. Chen. Science and Technology of Advanced Materials, Vol. 8 (2007) No.1-2, p.67.

Google Scholar

[19] M.Z. Hussein, N. Hashim and A.H. Yahaya. Journal of Experimental Nanoscience, Vol. 5 (2010) No.6, p.548.

Google Scholar

[20] A. Legrouri, M. Lakraimi, A. Barroug, et al. Water Research, Vol. 39 (2010) No.15, p.3441.

Google Scholar

[21] M.Z. Hussein, A.H. Yahaya, Z. Zainal, et al. Science and Technology of Advanced Materials, Vol. 6 (2005) No.8, p.956.

Google Scholar

[22] L.P. Cardoso, R. Celis, J. Cornejo, et al. Journal of Agricultural and Food Chemistry, Vol. 54 (2006) No.16, p.5968.

Google Scholar

[23] K. Robert, B. Margit, D. Imre. Colloids and Surfaces. A: Physicochemical and Engineering Aspects, Vol. 265 (2005) No.1-3, p.155.

Google Scholar

[24] R. Marangoni , C. Taviot-Guého, A. Illaik, et al. Journal of Colloid and Interface Science, Vol. 326 (2008) No.2, p.366.

DOI: 10.1016/j.jcis.2008.06.030

Google Scholar

[25] H. Nakayama, N. Wada, M. Tsuhako. International Journal of Pharmaceutics, Vol. 269 (2004) No.2, p.469.

Google Scholar

[26] M. X. Reinholdt, R. J. Kirkpatrick. Chemistry of Materials, Vol. 18 (2006) No.10, p.2567.

Google Scholar

[27] N. Filho, J. Francisco, L. Fabrice, et al. Applied Clay Science, Vol. 55 (2006), p.88.

Google Scholar

[28] Z. P. Xu,T.L. Walker, K.L. Liu, et al. International Journal of Nanomedicine, Vol. 2 (2007) No.2, p.163.

Google Scholar

[29] M.J. Masarudin, K. Yusoff, R.A. Rahim and M.Z. Hussein. Nanotechnology, Vol. 20 (2009) No.4, p.045602.

Google Scholar

[30] L. Desigaux, M.B. Belkacem, P. Richard, et al. Nano Lett, Vol. 6 (2006) No.2, p.199.

Google Scholar

[31] M.A. Thyveetil, P.V. Coveney, H.C. Greenwell, et al. J Am Chem Soc, Vol. 130 (2008) No.37, p.12485.

Google Scholar

[32] J.M. Oh, S.Y. Kwak and J.H. Choy. Journal of Physics and Chemistry of Solids, Vol. 67 (2006) No.5, p.1028.

Google Scholar

[33] M.A. Thyveetil, P.V. Coveney, H.C. Greenwell, et al. J. AM. CHEM. SOC, Vol. 130 (2008) No.14, p.4742.

Google Scholar

[34] Z.M. Baccar, D. Caballero, R. Eritja, et al. Electrochimica Acta, Vol. 74 (2012), p.123.

Google Scholar

[35] N. Hirokazu, H. Ai, T. Mitsutomo, et al. International Journal of Pharmaceutics, Vol. 393 (2010) No.1-2, pp.105-112.

Google Scholar

[36] J.K. Chen, C.H. Chan and F.C. Chang. Virtual Journal of Nanoscale Science and Technology, Vol. 17 (2008) No.8, p.53108.

Google Scholar

[37] C.H. Chan, J.K. Chen and F.C. Chang. Sensors and Actuators. B: Chemical, Vol. 133 (2008) No.1, p.327.

Google Scholar

[38] J.M. Oh, S.Y. Kwak and J.H. Choy. Journal of Physics and Chemistry of Solids, Vol. 67 (2006) No.5, p.1028.

Google Scholar

[39] J.H. Choy, S.Y. Kwak, Y.J. Jeong, et al. Angewandte Chemie, Vol. 39 (2000) No.22, p.4041.

Google Scholar

[40] E.L. Crepaldi, J.B. Valim and Q. Nova, Vol. 21 (1998) No.3, p.300.

Google Scholar

[41] G.J. Gou, H.P. Xu and J.P. Liu. Acta Chimica Sinica.[J], Vol. 67(2009) No.1, p.65.(Ch)

Google Scholar

[42] F.J. Bao, S.J. Wang, G.J. Gou, et al. Chemical Research and Application [J], Vol. 22 (2010) No.1, p.47.(Ch)

Google Scholar

[43] F.J. Bao, G.J Gou, S.J Wang, et al. Chinese Pharmaceutical Journal, Vol. 46(2011) No.2, p.128.(Ch)

Google Scholar

[44] G.J. Gou, Y.H. Liu, Y. SUN, et al. Acta Pharmaceutica Sinica 2011,Vol. 46(2012) No.11 p.1390.(Ch)

Google Scholar

[45] J.H. Choy, S.Y. Kwak, J.S. Park, et al, J. Portier and J. Am. Journal of the American Chemical Society, Vol. 121 (1999) No.6, p.1399.

Google Scholar

[46] L. Desigaux, M.B. Belkacem, P. Richard, et al. Nano Letters, 1999 No.2, p.199.

Google Scholar

[47] Y. Li, D. Liu, H.H. Ai, et al. Nanotechnology, 2010 No.21, p.1.

Google Scholar

[48] A. Ookubo, K. Ooi, F. Tani, et al. Langmuir, Vol. 10 (1994) No.2, p.407.

Google Scholar

[49] M. Nakayama, M, Haratake, M. Ono, et al. Applied Radiation and Isotopes, Vol 58 (2003). No.41, p.9.

Google Scholar

[50] A. Burzlaff, S. Brethauer, C. Kasper, et al. Cytometry. Part A, Vol 5862A (2004). No.1, p.65.

Google Scholar

[51] G.F, Zuo, Y.Z. Wan, X.G. Meng, et al. Materials Chemistry and Physics , Vol 126(2011). No.3, p.470.

Google Scholar

[52] W.M. Kriven, J.L. Bell. Ceramic Engineering and Science Proceedings, Vol 25 (2004). No.4, p.99.

Google Scholar

[53] W.S. Choi, D.S Eom, B.S. Han, et al. Journal of Biological Chemistry, Vol 279 (2004). No.19, p.20451.

Google Scholar

[54] C.M. Sayes, A.M. Gobin, K.D. Ausman, et al. Biomaterials, Vol 26 (2005). No.36, p.0142.

Google Scholar

[55] S. Rhaese, H.V. Briesen, H. Rubsamen-Waigmann, et al. Journal of Controlled Release, Vol 92 (2003). No.1-2, p.0168.

Google Scholar

[56] Z.P. Xu, T.L. Walker, K.L. Liu, et al. Int J Nanomedicine,Vol 2 (2007). No.2, p.163.

Google Scholar

[57] S.K. Sahoo, J. Panyam, S. Prabha, et al. Journal of Controlled Release, Vol 82 (2002). No.1, p.105.

Google Scholar

[58] Y.W. Leong, M.B. Abu Bakar, Z. Ishak, et al. Journal of Applied Polymer Science, Vol 982 (2005). No.1, p.413.

Google Scholar