[1]
E. D. Sontag, Feedback stabilization of nonlinear systems. in Robust Control of Linear Systems and Nonlinear Control. M. K. Kaashoek et al., Eds. Boston, MA: Birkhäuser, 1990, pp.61-81.
DOI: 10.1007/978-1-4612-4484-4_4
Google Scholar
[2]
M. Kawski, Homogeneous stabilizing feedback laws. Control Theory Adv. Technol., vol. 6, pp.497-516, 1990.
Google Scholar
[3]
M. Kawski, Stabilization of nonlinear systems in the plane, Syst. Contr. Lett., Vol. 12 (1989), 169-175.
Google Scholar
[4]
A. Bacciotti, Local Stabilizability of Nonlinear Control Systems, Singapore: World Scientific, 1992.
Google Scholar
[5]
W. P. Dayawansa, Recent advances in the stabilization problem for low dimensional systems, in Proc. 2nd IFAC Symp. Nonlinear Control Systems Design Symposium, Bordeaux, France, 1992, pp.1-8.
DOI: 10.1016/b978-0-08-041901-5.50006-3
Google Scholar
[6]
W. P. Dayawansa, C. F. Martin, and G. Knowles, Asymptotic stabilization of a class of smooth two dimensional systems, SIAM. J. Control Optim., vol. 28, pp.1321-1349, 1990.
DOI: 10.1137/0328070
Google Scholar
[7]
C. Qian, W. Lin. A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Automa. Contr. Vol.46, No. 7(2001), 1061-1079.
DOI: 10.1109/9.935058
Google Scholar
[8]
C. Qian, W. Lin. Practical output tracking of nonlinearly systems with uncontrollable unstable linearization. IEEE Transactions on Automatic Control, 2002, 47(1): 21-37.
DOI: 10.1109/9.981720
Google Scholar
[9]
W. Lin, C. Qian. Adaptive control of nonlinear parameterized systems: the nonsmooth feedback framework. IEEE Transactions on Automatic Control, 2002, 47(5): 757-774.
DOI: 10.1109/tac.2002.1000270
Google Scholar
[10]
W. Lin, C. Qian. Adaptive control of nonlinear parameterized systems: the smooth feedback case. IEEE Transactions on Automatic Control, 2002, 47(8): 1249-1266.
DOI: 10.1109/tac.2002.800773
Google Scholar
[11]
J. Kurzweil, On the inversion of Lyapunov's second theorem on the stability of motion, Amer. Math. Soc. Translations, ser. 2, vol. 24, p.19–77, 1956.
Google Scholar
[12]
C. Qian and W. Lin, Non-Lipschitz continuous stabilizer for nonlinear systems with uncontrollable unstable linearization, Syst. Contr. Lett., Vol. 42, pp.185-200, 2001.
DOI: 10.1016/s0167-6911(00)00089-x
Google Scholar