Assessment of Polycyclic Aromatic Hydrocarbons Contaminations in Sediments of Love River Mouth, Taiwan

Article Preview

Abstract:

The surface samples were collected from the Love River mouth, Taiwan and analyzed for polycyclic aromatic hydrocarbons (PAHs). Total PAHs concentrations varied from 785 to 1,893 ng/g dw. The spatial distribution of PAHs reveals that the PAHs concentration is relatively high in the river mouth region, and gradually diminishes toward the harbor region. Diagnostic ratios showed that the possible source of PAHs in the Love River mouth could be petroleum combustion. The toxic equivalent concentrations (TEQcarc) of PAHs varied from 117 to 272 ng TEQ/g dw. Higher total TEQcarc values were found in the river mouth region. As compared with the US Sediment Quality Guidelines (SQGs), the observed levels of PAHs at Love River mouth were lower than the effects range low (ERL), and would probably not exert adverse biological effects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

323-327

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.E. Sverdrup, T. Nielsen, and P.H. Krogh: Environ. Sci. Technol. 36 (2002) 2429–2435.

Google Scholar

[2] M. Qiao, C. Wang, S. Huang, D. Wang, and Z. Wang: Environ. Int. 32 (2006) 28–33.

Google Scholar

[3] P.C. van Metre, B.J. Mahler, and E.T. Furlong: Environ. Sci. Technol. 34 (2000) 4064–4070.

Google Scholar

[4] C.W. Chen, and C.F. Chen: Mar. Pollut. Bull. 63 (2011) 417–423.

Google Scholar

[5] C.W. Chen, C.M. Kao, C.F. Chen, and C.D. Dong: Chemosphere 66 (2007) 1431–1440.

Google Scholar

[6] P. Baumard, H. Budzinski, and P. Garrigues: Environ. Toxicol. Chem. 17 (1998) 765–776.

Google Scholar

[7] M.B. Yunker, R.W. Macdonald, R. Vingarzan, R.H. Mitchell, D. Goyette, and S. Sylvestre: Org. Geochem. 33 (2002) 489–515.

Google Scholar

[8] H. Budzinski, I. Jones, J. Bellocq, C. Pierrad, and P. Garrigues: Mar. Chem. 58 (1997) 85–97.

Google Scholar

[9] M.P. Zakaria, H. Takada, S. Tsutsumi, K. Ohno, J. Yamada, E. Kouno, and H. Kumata: Environ. Sci. Technol. 36 (2002) 1907–1918.

DOI: 10.1021/es011278+

Google Scholar

[10] S.A. Stout, A.D. Uhler, and S.D. Emsbo-Mattingly: Environ. Sci. Technol. 38 (2004) 2987–2994.

DOI: 10.1021/es040327q

Google Scholar

[11] G. De Luca, A. Furesi, G. Micera, A. Panzanelli, P.C. Piu, M.I. Pilo, N. Spano, and G. Sanna: Mar. Pollut. Bull. 50 (2005) 1223–1232.

DOI: 10.1016/j.marpolbul.2005.04.021

Google Scholar

[12] H.H. Soclo, P. Garrigues, and M. Ewald: Mar. Pollut. Bull. 40 (2000) 387–396.

Google Scholar

[13] E. Magi, R. Bianco, C. Ianni, and M.D. Carro: Environ. Pollut. 119 (2002) 91–98.

Google Scholar

[14] J. Zhang, L.Z. Cai, D.X. Yuan, and M. Chen: Mar. Pollut. Bull. 49 (2004) 479–486.

Google Scholar

[15] G. Li, X. Xia, Z. Yang, R. Wang, and N. Voulvoulis: Environ. Pollut. 144 (2006) 985–993.

Google Scholar

[16] V.M. Savinov, T.N. Savinova, G.G. Matishov, S. Dahle, and K. Næc: Sci. Total Environ. 306 (2003) 39–56.

Google Scholar

[17] M. Nadal, M. Schuhmacher, and J.L. Domingo: Environ. Pollut. 132 (2004) 1–11.

Google Scholar

[18] C.A. Peters, C.D. Knightes, and D.G. Brown: Environ. Sci. Technol. 33 (1999) 4499–4507.

Google Scholar

[19] US EPA (US Environmental Protection Agency), Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons (EPA/600/R/089), Washington, D.C., (1993).

Google Scholar

[20] E.R. Long, D.D. MacDonald, S.L. Smith, and F.D. Calder: Environ. Manage. 19 (1995) 81–97.

Google Scholar