[1]
W.J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S.C. Williams, R. Boudreau, M.A.Le Gros, C.A. Larabell, A.P. Alivisatos, Biological application of colloidal nanocrystals, Nanotechnology. 14-7 (2003) 15-29.
DOI: 10.1088/0957-4484/14/7/201
Google Scholar
[2]
J. Satooka, A. Ito, Cluster-Glass Behavior of the Diluted Antiferromagnet Fe0.26Zn0.74F, J. Phys. Soc. 66 (1997) 784-792.
Google Scholar
[3]
R.P. Cowburn, Magnetic nanodots for device applications, Journal of Magnetism and Magnetic Materials 252-245 (2002) 505-511.
DOI: 10.1016/s0304-8853(01)01086-1
Google Scholar
[4]
V. Russier, Calculated magnetic properties of two-dimensional arrays of nanoparticles at vanishing temperature, Applied Physics Letters 89 (2001) 1287-1295.
DOI: 10.1063/1.1333034
Google Scholar
[5]
S. Morup, Superparamagnetism and spin glass ordering in magnetic, Europhysics Letters 28-9 (1994) 671-676.
DOI: 10.1209/0295-5075/28/9/010
Google Scholar
[6]
J. Norpoth, S. Dreyer, Ch. Jooss, S. Sievers, Manipulating the dipolar magnetic interactions in FePt square arrays: The role of edge roughness, Journal of Applied Physics 101 (2007) 09F518-09F521.
DOI: 10.1063/1.2712526
Google Scholar
[7]
K. Nefedev, Y. Ivanov, A. Peretyatko, V. Belokon, Magnetic States of Nanodot Arrays. Physical and Numerical Experiments, Solid State Phenomena 168 – 169 (2010) 325-328.
DOI: 10.4028/www.scientific.net/ssp.168-169.325
Google Scholar
[8]
K.V. Nefedev, Y.P. Ivanov, A.A. Peretyatko, Parallel algorithm for calculation of the nanodot magnetization, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6083 LNCS (2010) 260-267.
DOI: 10.1007/978-3-642-14822-4_29
Google Scholar