The Inverse Task for Magnetic Force Microscopy Data

Article Preview

Abstract:

The computer processing of cobalt nanodots magnetic force microscopy was fulfilled. The solution of reverse task of magnetic force microscopy is obtained for surface nanosystems. Superposition of fields, which are generated by a system of magnetic moments in the selected point in space, causes a linear dependence of the force gradient of the dipole-dipole interaction between the components of the vectors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

744-747

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S.C. Williams, R. Boudreau, M.A.Le Gros, C.A. Larabell, A.P. Alivisatos, Biological application of colloidal nanocrystals, Nanotechnology. 14-7 (2003) 15-29.

DOI: 10.1088/0957-4484/14/7/201

Google Scholar

[2] J. Satooka, A. Ito, Cluster-Glass Behavior of the Diluted Antiferromagnet Fe0.26Zn0.74F, J. Phys. Soc. 66 (1997) 784-792.

Google Scholar

[3] R.P. Cowburn, Magnetic nanodots for device applications, Journal of Magnetism and Magnetic Materials 252-245 (2002) 505-511.

DOI: 10.1016/s0304-8853(01)01086-1

Google Scholar

[4] V. Russier, Calculated magnetic properties of two-dimensional arrays of nanoparticles at vanishing temperature, Applied Physics Letters 89 (2001) 1287-1295.

DOI: 10.1063/1.1333034

Google Scholar

[5] S. Morup, Superparamagnetism and spin glass ordering in magnetic, Europhysics Letters 28-9 (1994) 671-676.

DOI: 10.1209/0295-5075/28/9/010

Google Scholar

[6] J. Norpoth, S. Dreyer, Ch. Jooss, S. Sievers, Manipulating the dipolar magnetic interactions in FePt square arrays: The role of edge roughness, Journal of Applied Physics 101 (2007) 09F518-09F521.

DOI: 10.1063/1.2712526

Google Scholar

[7] K. Nefedev, Y. Ivanov, A. Peretyatko, V. Belokon, Magnetic States of Nanodot Arrays. Physical and Numerical Experiments, Solid State Phenomena 168 – 169 (2010) 325-328.

DOI: 10.4028/www.scientific.net/ssp.168-169.325

Google Scholar

[8] K.V. Nefedev, Y.P. Ivanov, A.A. Peretyatko, Parallel algorithm for calculation of the nanodot magnetization, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6083 LNCS (2010) 260-267.

DOI: 10.1007/978-3-642-14822-4_29

Google Scholar