Synthesis and Characterization of Three-Dimensional (3D) Flowerlike CuO by a Simple Chemical Reduction Method

Article Preview

Abstract:

Three-dimensional (3D) flowerlike CuO structures were prepared successfully by reducing copper chloride (CuCl2·2H2O) aqueous solution in the presence of cetyltrimethylammonium bromide (CTAB). The as-prepared CuO structures were characterized by UV-Vis, X-ray powder diffraction (XRD), FESEM and EDS techniques. The flowerlike CuO structures consisted of Salix leaf-like nanostructures. A possible growth mechanism for the formation of 3D flowerlike CuO structure was proposed. The processes of ripening and directed growing of nanoparticles were most important factors to obtain the 3D flowerlike CuO structures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

729-733

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Zhang, Y. G. Guo, W. M. Liu and J. C. Hao, J. Appl. Phys., 103 (2008) 114304

Google Scholar

[2] X. J. Zhang, G. F. Wang, X. W. Liu, J. J. Wu, M. Li, J. Gu, H. Liu and B. Fang, J. Phys. Chem. C, 112 (2008), 16845

Google Scholar

[3] L. S. Zhong , J. S. Hu , H. P. Liang, A. M. Cao, W. G. Song and L. J. Wan, Adv. Mater., 18 (2006), 2426

Google Scholar

[4] D. H. Gracias, J. Tien, T. L. Breen, C. Hsu, G. M. Whitesides, Science, 289 (2000), 1170

Google Scholar

[5] A. M. Cao, J. S. Hu, H. P. Liang, L. J. Wan, Angew. Chem. Int. Ed., 44 (2005), 4391

Google Scholar

[6] J. S. Hu, Y. G. Guo, H. P. Liang, L. J. Wan and L. Jiang, J. Am. Chem. Soc., 127 (2005) , 17090

Google Scholar

[7] J. S. Hu, L. L. Ren, Y. G. Guo, H. P. Liang, A. M. Cao, L. J. Wan and C. L. Bai, Angew. Chem. Int. Ed., 44 (2005), 1269

Google Scholar

[8] E. Dujardin, S. Mann, Adv. Mater., 14 (2002), 775

Google Scholar

[9] L. S. Zhong, J. S. Hu, A. M. Cao, Q. Liu, W. G. Song and L. J. Wan, Chem. Mater., 19 (2007), 1648.

Google Scholar

[10] H. R. Li, D. S. Zhang, P. Maitarad, L. Y. Shi, R. H. Gao, J. P. Zhang and W. G. Cao, Chem. Commun., 48 (2012), 10645

Google Scholar

[11] X. P. Gao, J. L. Bao, G. L. Pan, H. Y. Zhu, P. X. Huang, F. Wu and D. Y. Song, J. Phys. Chem. B, 108 (2004), 5547

Google Scholar

[12] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Taracon, Nature, 407 (2000), 496

Google Scholar

[13] A. Chowdhuri, V. Gupta, K. Sreenivas, R. Kumar, S. Mozumdar, P. K. Patanjali, Appl. Phys. Lett., 84 (2004), 1180

Google Scholar

[14] J. T. Zhang, J. F. Liu, Q. Peng, X. Wang and Y.D. Li, Chem. Mater., 18 (2006), 867

Google Scholar

[15] J. A. Switzer, H. M. Kothari, P. Poizot, S. Nakanishi and E.W. Bohannan, Nature, 425 (2003), 490

DOI: 10.1038/nature01990

Google Scholar

[16] M. Vaseem, A. Umar, Y. B. Hahn, D. H. Kim, K. S. Lee, J. S. Jang and J. S. Lee, Catal. Commun., 10 (2008), 11

Google Scholar

[17] Y. W. Zhu, T. Yu, F. C. Cheong X. J. Xu, C. T. Lim, V. B. C. Tan, J. T. L. Thong and C. H. Sow, Nanotechnology, 16 (2005), 88

Google Scholar

[18] X. G. Zheng, C. N. Xu, , Y. Tomokiyo, E. Tanaka, H. Yamada and Y. Soejima, Phys. ReV. Lett., , 85 (2000), 5170

Google Scholar

[19] Q. M. Pan, H. Z. Jin, H. B. Wang and G. P. Yin, Electrochim. Acta, 53 (2007) 951

Google Scholar

[20] H. X. Zhang, J. Feng and M. L. Zhang, Mater. Res. Bull., 43 (2008), 3221

Google Scholar

[21] F. Teng, W. Q. Yao, Y. F. Zheng, Y. T. Ma, Y. Teng, T. G. Xu, S. H. Liang and Y. F. Zhu Sens. Actuators B, 134 (2008), 761

Google Scholar

[22] J. X. Xia, H. M. Li, Z. J. Luo, H. Shi, K. Wang, H. M. Shu and Y. S. Yan, J. Phys. Chem. Solids, 70 (2009), 1461

Google Scholar

[23] J. P. Liu, X. T. Huang, Y. Y. Li, K. M. Sulieman, X. He, F. L. Sun, Crystal Growth & Design, 6 (2006), 1690

Google Scholar

[24] K. Borgohain, N. Murase and S. Mahamuni, J. Appl. Phys., 92 (2002), 1292

Google Scholar