Static and Dynamic Stiffness of the Mechatronic Position Servo Systems

Article Preview

Abstract:

In this paper a model for the mechatronic position servo system with disturbance forces is presented. Static and dynamic stiffness for the proposed model is analyzed. An equation for analytical calculation of the static stiffness is developed. Correctness of the proposed equation is experimentally verified. Simulation of the influence of some parameters on the static and dynamic mechatronic position servo system stiffness is performed with simulation program MATLAB & SIMULINK.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

186-193

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. D. Alter, T. C., Tsao, Dynamic Stiffness Enhancement of Direct Linear Motor Feed Drives for Machining, Proceedings of the American Control Conference, Baltimore, Maryland, USA, June 1994, pp.3303-3307, (1994).

DOI: 10.1109/acc.1994.735186

Google Scholar

[2] Y. Altintas, E. C. Okwudire, Dynamic stiffness enhancement of direct-driven machine tools using sliding mode control with disturbance recovery, CIRP Annals - Manufacturing Technology Vol. 58, p.335–338, (2009).

DOI: 10.1016/j.cirp.2009.03.045

Google Scholar

[3] S. Bin-H., T. Mi-C., Robust dynamic stiffness design of linear servomotor drives, Control Engineering Practice, Vol.14, p.1325 –1336, (2006).

DOI: 10.1016/j.conengprac.2005.09.001

Google Scholar

[4] Q. Dong, J. Xie, Designing and tuning of PID controllers for a digital DC position servo system., Proceedings of the 4th World Congress on Intelligent Control and Automation (WCICA), June 10-14, Changai, China, vol. 2, pp.905-908, (2002).

DOI: 10.1109/wcica.2002.1020706

Google Scholar

[5] M. Hidekazu, Y. Akihiro, F. Shigeru, S. Tadashi, G. Satoru, N. Masatoshi, Optimal Gain Tuning for Contour Control of NC Machine Tool by Using Genetic Algorithm, Journal of the Japan Society of Precision Engineering, Vol.67, No.4, pp.591-596, (2001).

Google Scholar

[6] S.-C. Hsu, W.-D. Liu, C.-H. Liu, An automated machine parameter identification and controller tuning procedure for a linear permanent magnet synchronous motor drive, Journal of the Chinese Institute of Electrical Engineering, Transactions of the Chinese Institute of Engineers, Series E, Vol.10 (1), pp.55-67, (2003).

Google Scholar

[7] Y. Kakino, A. Matsubara, Z. Li, D. Ueda, H. Nakagawa, T. Takeshita, H. Maruyama, A study of the Total Tuning of the Feed Drive System in NC Machine Tools (2nd Report)-Single Axis Servo Parameter Tuning, Journal of the Japan Society of Precision Engineering, Vol.61, No.2, 268-272, (1995).

DOI: 10.2493/jjspe.61.268

Google Scholar

[8] Y. Kakino, A. Matsubara, Z. Li, D. Ueda, H. Nakagawa, T. Takeshita, H. Maruyama, A study of the Total Tuning of the Feed Drive System in NC Machine Tools (4th Report)-Multiple Axes Tuning, Journal of the Japan Society of Precision Engineering, Vol.63, No.3, pp.368-372, (1997).

DOI: 10.2493/jjspe.63.368

Google Scholar

[9] K., Joohn-S., C. Moon-S., J. K. Seok, The Unified Gain Tuning Approach to the PID Position Control with Minimal Overshoot, Position Stiffness and Robustness to Load Variance for Linear Machine Drives in Machine Tool Environment, IEEE, pp.635-641, (2001).

DOI: 10.1109/apec.2001.911714

Google Scholar

[10] K. Lee, S. Ibaraki, A. Matsubara, Y. Kakino, Y. Suzuki, J. Braasch, A Servo Parameter Tuning Method for High-speed NC Machine Tools based on Contouring Error Measurement. Laser Metrology and Machine Performance VI, WIT Press, Southampton, UK, (Proc. of LAMDAMAP 03 at Huddersfield, UK, July), (2003).

Google Scholar

[11] A. N. Losic, Dynamic stiffness analysis of a PWM MOSFET DC feed drive for NC machine tools, Proceedings of the IECON'85 (International conference on industrial electronic, control and instrumentation), Vol.2, 761-767, (1985).

Google Scholar

[12] A. N. Losic, Static stiffness and efficiency of a PWM MOSFET DC feed drive for NC machine tools, Proceedings of the industry applications society annual meeting, pp.755-759, (1983).

Google Scholar

[13] A. Matsubara, S. Ibaraki, Y. Kakino, K. Lee, Suzuki Y., Yamaoka Y., A practical servo parameter tuning method for high speed feed drives of NC machine tools, Proceedings of 2002 Japan-USA Symposium on Flexible Automation, Hiroshima, Japan, July 14-19, vol. 1, pg. 71-74, (2002).

Google Scholar

[14] J. M. Nieniewski, G. J. Bollinger, Computer Analysis of the Static Stiffness of SCR DC Feed Drives Used on NC Machine Tools. IEEE Transactions on Industry Applications, Vol.IA-15, No.5, September/October, 494-500, (1979).

DOI: 10.1109/tia.1979.4503697

Google Scholar

[15] M. Nieniewski, Dynamic stiffness of SCR dc servo drives used on NC machine tools. Archiwum elektrotechniki, Vol.28, No.3, 645-647, (1979).

Google Scholar

[16] A. Netushil, Theory of automatic control, Mir Publishers, Moscow, (1978).

Google Scholar

[17] P. Ma, Z. Chen, J. Li, B. Zhang,Dynamic stiffness of high velocity feed unit of the zero transmission machine tools, China Mechanical Engineering, China, Vol. 15, No. 7, pp.575-81, (2004).

Google Scholar

[18] Sato, R., M. Tsutsumi, Modeling, and controller tuning techniques for feed drive systems, 2005 American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC 74 DSC (1 PART A), Proceedings of IMECE 2005, 2005 ASME International Mechanical Engineering Congress and Exposition, November 5-11, Orlando, Florida, USA pp.669-679, (2005).

DOI: 10.1115/imece2005-80596

Google Scholar

[19] M. Weck, Werkzeugmaschinen und Fertigungssysteme, Band 3, Mechatronisch Systeme: Vorschubantriebe and Processdiagnose, Springer, Prentice-Hall, (2007).

Google Scholar

[20] J. Y. Yen, H. M. Chang, Performance robustness and stiffness analysis on a machine tool servo design, International Journal of Machine Tools and Manufacture, Vol. 44, No. 5, April, pp.523-531, (2004).

DOI: 10.1016/j.ijmachtools.2003.10.024

Google Scholar