[1]
Maheshwari, A. and S. Wuhrer, Geodesic Paths on 3D Surfaces: Survey and Open Problems. (2009).
Google Scholar
[2]
Dijkstra, E.W., A note on two problems in connexion with graphs. Numerische Mathematik, (1959).
Google Scholar
[3]
Mitchell, J.S.B., D.M. Mount, and C.H. Papadimitriou, The discrete geodesic problem. SIAM Journal on Computing, 1987. 16: p.647.
DOI: 10.1137/0216045
Google Scholar
[4]
Surazhsky, V., et al., Fast exact and approximate geodesics on meshes. ACM Transactions on Graphics (TOG), 2005. 24(3): pp.553-560.
DOI: 10.1145/1073204.1073228
Google Scholar
[5]
Hotz, I. and H. Hagen. Visualizing geodesics. in Visualization 2000. Proceedings. 2000. IEEE.
Google Scholar
[6]
Kasap, E., M. Yapici, and F.T. Akyildiz, A numerical study for computation of geodesic curves. Applied Mathematics and Computation, 2005. 171(2): pp.1206-1213.
DOI: 10.1016/j.amc.2005.01.109
Google Scholar
[7]
Chen, S.G., Geodesic-like curves on parametric surfaces. Computer Aided Geometric Design, 2010. 27(1): pp.106-117.
DOI: 10.1016/j.cagd.2009.10.001
Google Scholar
[8]
Seong, J.K., W.K. Jeong, and E. Cohen, Curvature-based anisotropic geodesic distance computation for parametric and implicit surfaces. The Visual Computer, 2009. 25(8): pp.743-755.
DOI: 10.1007/s00371-009-0362-0
Google Scholar
[9]
Pennec, X., Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. Journal of Mathematical Imaging and Vision, 2006. 25(1): pp.127-154.
DOI: 10.1007/s10851-006-6228-4
Google Scholar
[10]
Sethian, J.A., A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences, 1996. 93(4): pp.1591-1595.
DOI: 10.1073/pnas.93.4.1591
Google Scholar
[11]
Klingenberg, W. and D. Hoffman, A course in differential geometry1978: Springer-Verlag. 178.
Google Scholar
[12]
Ravi Kumar, G., et al., Geodesic curve computations on surfaces. Computer Aided Geometric Design, 2003. 20(2): pp.119-133.
DOI: 10.1016/s0167-8396(03)00023-2
Google Scholar
[13]
Baraff, D. and A. Witkin, Large steps in cloth simulation, in Proceedings of the 25th annual conference on Computer graphics and interactive techniques1998, ACM. pp.43-54.
DOI: 10.1145/280814.280821
Google Scholar
[14]
Breen, D.E., D.H. House, and P.H. Getto, A physically-based particle model of woven cloth. The Visual Computer, 1992. 8(5): pp.264-277.
DOI: 10.1007/bf01897114
Google Scholar
[15]
Bischoff, S., T. Weyand, and L. Kobbelt, Snakes on triangle meshes. Bildverarbeitung für die Medizin 2005, 2005: pp.208-212.
DOI: 10.1007/3-540-26431-0_43
Google Scholar