[1]
Zames. G. Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms and approximate inverse. IEEE Trans. Automat. Control, 1981, 26: 301~320.
DOI: 10.1109/tac.1981.1102603
Google Scholar
[2]
Zhou K et al. An algebraic Ricacati equation approach to optimization. systems. System and Control Letters, 1988, 11: 85~92.
Google Scholar
[3]
Doyle J C, Glover K, Kharagongekar P P and Francis B A. State space solutions to standard and control problems. IEEE Trans. Automat. Control, 1989, 34: 831~847.
DOI: 10.1109/9.29425
Google Scholar
[4]
Ravi R et AT. control of linera time-varying systems: A state space approach. SIM.J. Contr. Optimiz., 1991, 29: 1394~1413.
Google Scholar
[5]
Vander A J Schaft. L2—On a state space approach to nonlinea control system. System and Control Letters, 1988, 11: 85~92.
Google Scholar
[6]
Vander A J Schaft. L2—Gain analysis of nonlinear systems and nonlinear control. IEEE Trans. Automat. Control, 1991Z: 1~8.
Google Scholar
[7]
Khargonekar P P et al. Robust stabilization of uncertain linear systems: Quadratic stabilizationg and control theory. IEEE Trans. Automat. Control, 1990, 35: 356~361.
DOI: 10.1109/9.50357
Google Scholar
[8]
Bryan Allan Norman, James C. Bean; A Genetic Algorithm Methodology for Complex Scheduling Problems; University of Michigan, College of Engineering; (1997).
Google Scholar
[9]
Mitsuo Gen, Runwei Cheng, A Genetic Algorithm Methodology for Complex Scheduling Problems, Wiley-IEEE, (1999).
Google Scholar
[10]
Hirota, A.; Nagai, S.; Al, M.A.; Rukonuzzaman, M.; Nakaoka, M., A novel hysteresis current control scheme for single switch type single phase PFC converter, Power Conversion Conference, 2002, 3: 1223-1225.
DOI: 10.1109/pcc.2002.998147
Google Scholar